DOI QR코드

DOI QR Code

Rapid and Nondestructive Discrimination of Fusarium Asiaticum and Fusarium Graminearum in Hulled Barley (Hordeum vulgare L.) Using Near-Infrared Spectroscopy

  • Lim, Jong Guk (Department of Agricultural Engineering, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Gi Young (Department of Agricultural Engineering, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Mo, Chang Yeun (Department of Agricultural Engineering, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Oh, Kyoung Min (Department of Agricultural Engineering, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Geon Seob (Department of Agricultural Engineering, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Yoo, Hyeon Chae (Department of Agricultural Engineering, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Ham, Hyeon Heui (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Young Tae (Agricultural Machinery Certification Team, Department of Analysis and Citification, Foundation of Agriculture and Technology Commercialization and Transfer) ;
  • Kim, Seong Min (Department of Bioindustrial Machinery Engineering, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Kim, Moon S. (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
  • Received : 2017.10.22
  • Accepted : 2017.11.23
  • Published : 2017.12.01

Abstract

Purpose: This study was conducted to discriminate between normal hulled barley and Fusarium (Fusarium asiaticum and Fusarium graminearum) infected hulled barley by using the near-infrared spectroscopy (NIRS) technique. Methods: Fusarium asiaticum and Fusarium graminearum were artificially inoculated in hulled barley and the reflectance spectrum of the barley spike was obtained by using a near-infrared spectral sensor with wavelength band in the range 1,175-2,170 nm. After obtaining the spectrum of the specimen, the hulled barley was cultivated in a greenhouse and visually inspected for infections. Results: From a partial least squares discriminant analysis (PLS-DA) prediction model developed from the raw spectrum data of the hulled barley, the discrimination accuracy for the normal and infected hulled barley was 99.82% (563/564) and 100% (672/672), respectively. Conclusions: NIRS is effective as a quick and nondestructive method to detect whether hulled barley has been infected with Fusarium. Further, it expected that NIRS will be able to detect Fusarium infections in other grains as well.

Keywords

References

  1. Armstrong, P. R. 2006. Rapid single-kernel nir measurement of grain and oil-seed attributes. Applied Engineering in Agriculture 22(5):767-772. https://doi.org/10.13031/2013.21991
  2. Alexandrakis, D., G. Downey and A. G. M. Scannell. 2008. Detection and identification of bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis. Journal of Agricultural Food Chemistry 56(10):3431-3437. https://doi.org/10.1021/jf073407x
  3. Bauriegel, E. and W. B. Herppich. 2014. Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. infections on wheat. Agriculture 4(1):32-57.
  4. Botelho, B. G., N. Reis, Oliveira L. S. and Sena M. M. 2015. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food chemistry 181:31-37. https://doi.org/10.1016/j.foodchem.2015.02.077
  5. Bottalico, A. and G. Perrone. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology 108:611-624. https://doi.org/10.1023/A:1020635214971
  6. Delwiche, S. R. and G. A. Hareland. Detection of scabdamaged hard red spring wheat kernels by nearinfrared reflectance. 2004. Cereal Chemistry 81(5):643-649. https://doi.org/10.1094/CCHEM.2004.81.5.643
  7. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics, and biology. St. Paul: The American Phytopathological Society.
  8. Janni, J., B. A. Weinstock, L. Hagen and S. Wright. 2008. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize. Applied Spectroscopy 62(4):423-426. https://doi.org/10.1366/000370208784046885
  9. Jiang, H. Y., Y. J. Zhu, L. M. Wei, J. R. Dai, T. M. Song, Y. L. Yan and S. J. Chen. 2007. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.). Plant Breeding 126:492-497. https://doi.org/10.1111/j.1439-0523.2007.01338.x
  10. Karugia, G. W., H. Suga, L. R. Gale, T. Nakajima, A. Ueda and M. Hyakumachi. 2009. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J Gen Plant Pathol. 75(2):110-118. https://doi.org/10.1007/s10327-009-0153-5
  11. Lammertyn, J., B. Nicolai, K. Ooms, V. De Smedt and J. De Baerdemaeker. 1998. Non-destructive measurement of acidity, soluble solids, and firmness of Jonagold apples using NIR-spectroscopy. ASAE. 41(4):1089-1094. https://doi.org/10.13031/2013.17238
  12. Lee, J., I. Y. Chang, S. H. Yun, J. F. Leslie and Y. W. Lee. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl Environ Microbiol. 75(10):3289-3295. https://doi.org/10.1128/AEM.02287-08
  13. Lee, T., S. H. Lee, S. H. Lee, J. Y. Shin, J. C. Yun, Y. W. Lee and J. G. Ryu. 2011. Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J Food Prot. 74(7):1169-1174. https://doi.org/10.4315/0362-028X.JFP-10-564
  14. Lee, T., S. H. Lee, J. Y. Shin, H. K. Kim, S. H. Yun, H. Y. Kim, S. H. Lee and J. G. Ryu. 2014. Comparison of trichothecene biosynthetic gene expression between Fusarium graminearum and Fusarium asiaticum. Plant Pathol J. 30(1):33-42. https://doi.org/10.5423/PPJ.OA.11.2013.0107
  15. Lim, J. G., S. W. Kang, K. J. Lee, C. Y. Mo and J. Y. Son. 2011. Identification of foreign objects in soybeans using near-infrared spectroscopy. Food Engineering Progress 15(2):136-142 (In Korean, with English abstract).
  16. Lim, J. G., C. Y. Mo, G. Y. Kim, S. K. Kang, K. J. Lee, M. S. Kim and J. Moon. 2014. Non-destructive and rapid prediction of moisture content in red pepper (Capsicum annuum L.) powder using near-infrared spectroscopy and a partial least squares regression model. Journal of Biosystems Engineering 39(3): 184-193. https://doi.org/10.5307/JBE.2014.39.3.184
  17. Mule, G., A. Logrieco, G. Stea and A. Bottalico. 1997. Clustering of trichothecene-producing strains determined from 28S ribosomal DNA sequences. Appl Environ Microbiol. 63(5):1843-1846.
  18. Nicolai, B. M., K. I. Theron and J. Lammertyn. 2007. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemometr. Intell. Lab. Syst. 85(2):243-252. https://doi.org/10.1016/j.chemolab.2006.07.001
  19. O'Donnell, K., H. C. Kistler, B. K. Tacke and H. H. Casper. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97(14):7905-7910. https://doi.org/10.1073/pnas.130193297
  20. Spielbauer, G., P. Amstrong, J. W. Baier, W. B. Allen, K. Richradson, B. Shen and M. Settles. 2009. High-throughput near e infrared reflectance spectroscopy for predicting quantitative and qualitative composition phenotypes of individual maize kernels. Cereal Chemistry 86(5):556-564. https://doi.org/10.1094/CCHEM-86-5-0556
  21. Suga, H., G. W. Karugia, T. Ward, L. R. Gale, K. Tomimura, T. Nakajima, A. Miyasaka, S. Koizumi, K. Kageyama and M. Hyakumachi. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166. https://doi.org/10.1094/PHYTO-98-2-0159
  22. Wang, D., F. E. Dowell and D. S. Chung. 2001. Assessment of heatdamaged wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 78(5):625-628. https://doi.org/10.1094/CCHEM.2001.78.5.625
  23. Wang, J. H., M. Ndoye, J. B. Zhang, H. P. Li and Y. C. Liao. 2011. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins 3(8):1020-1037. https://doi.org/10.3390/toxins3081020
  24. Weinstock, B. A., J. Janni, L. Hagen and S. Wright. 2006. Prediction of oil and oleic acid concentrations in individual corn (zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis. Applied Spectroscopy 60(1):9-16. https://doi.org/10.1366/000370206775382631
  25. Yli-Mattila, T. 2011. Detection of trichothecene-producing Fusarium species in cereals in Northern Europe and Asia. Agron Res. 9:521-526.

Cited by

  1. Rapid Measurement of Soybean Seed Viability Using Kernel-Based Multispectral Image Analysis vol.19, pp.2, 2019, https://doi.org/10.3390/s19020271