• Title/Summary/Keyword: near-IR

Search Result 354, Processing Time 0.026 seconds

NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

  • Kim, J.W.;Kang, A.;Shin, I.G.;Chun, S.H.;Sohn, Y.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

Effect of CuO on the Optical and Structural Properties of Phosphate Glass for Near-Infrard Filter (근적외선 필터용 인산계 유리의 광학적 특성 및 구조적 특성에 미치는 CuO 의 영향)

  • Kim, Seong-Il;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Kim, Young-Ho;Lee, Jong-Hwa;Choi, Deuk-Kyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.657-660
    • /
    • 2009
  • Optical characteristics and structural changes depending on CuO content in phosphate glasses that are used in near-infrared (near-IR) filters were investigated. With phosphate glasses that contain 1-9 mol% CuO, changes in optical transmittance, optical absorption, and color coordinate were measured with a UV-VIS spectrophotometer. An XPS (X-ray photoelectron spectroscopy) analysis was performed to determine valence of copper ion that influences optical characteristics in near-IR filter glasses. Structural changes in glasses depending on CuO content were also analyzed by FT-IR (Fourier transform infrared) and Raman spectrophotometers. From the UV-VIS spectrophotometer results, strong absorption peaks at 220 & 900 nm were found and transmittance was decreased. The color coordinates of the glasses were shifted to the green color direction with CuO addition for increasing absorption of long wavelength range spectra, in spite of the amount of $Cu^{2+}$, which gives a blue color to glasses, and which was increased in XPS results. Also, structural de-polymerization of glasses with CuO addition were found by FT-IR and Raman results.

PROPERTIES OF DUST IN VARIOUS ENVIRONMENTS OF NEARBY GALAXIES

  • Kaneda, Hidehiro;Kokusho, Takuma;Yamada, Rika;Ishihara, Daisuke;Oyabu, Shinki;Kondo, Toru;Yamagishi, Mitsuyoshi;Yasuda, Akiko;Onaka, Takashi;Suzuki, Toyoaki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.135-139
    • /
    • 2017
  • We have performed systematic studies of the properties of dust in various environments of nearby galaxies with AKARI. The unique capabilities of AKARI, such as near-infrared (near-IR) spectroscopy combined with all-sky coverage in the mid- and far-IR, enable us to study processing of dust, particularly carbonaceous grains includings polycyclic aromatic hydrocarbons (PAHs), for unbiased samples of nearby galaxies. In this paper, we first review our recent results on individual galaxies, highlighting the uniqueness of AKARI data for studies of nearby galaxies. Then we present results of our systematic studies on nearby starburst and early-type galaxies. From the former study based on the near-IR spectroscopy and mid-IR all-sky survey data, we find that the properties of PAHs change systematically from IR galaxies to ultraluminous IR galaxies, depending on the IR luminosity of a galaxy or galaxy population. From the latter study based on the mid- and far-IR all-sky survey data, we find that there is a global correlation between the amounts of dust and old stars in early-type galaxies, giving an observational constraint on the origin of the dust.

IR Absorption Property in Nano-thick Nickel Silicides (저온에서 형성된 니켈실리사이드의 적외선 흡수 특성)

  • Han, Jeung-Jo;Song, Oh-Sung;Choi, Young-Youn
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.179-185
    • /
    • 2009
  • We fabricated thermally evaporated 30 nm-Ni/(20 nm or 60 nm)a-Si:H/Si films to investigate the energy-saving property of silicides formed by rapid thermal annealing (RTA) at temperatures of $350^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$, and $600^{\circ}C$ for 40 seconds. A transmission electron microscope (TEM) and a high resolution X-ray diffractometer (HRXRD) were used to determine the cross-sectional microstructure and phase changes. A UVVIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM and HRXRD analysis, for the nickel silicide formed at low temperatures below $450^{\circ}C$, we confirmed columnar-shaped structures with thicknesses of $20{\sim}30\;nm$ that had ${\delta}-Ni^2Si$ phases. Regarding the nickel silicide formed at high temperatures above $550^{\circ}C$, we confirmed that the nickel silicide had more than 50 nm-thick columnar-shaped structures with a $Ni_{31}Si_{12}$ phase. Through UV-VIS-NIR analysis, nickel silicide showed almost the same absorbance in the near IR region as well as ITO. However, in the middle IR region, the nickel silicides with low temperature showed similar absorbance to those from high temperature silicidation.

Infrared Target Extraction Using Weighted Information Entropy and Adaptive Opening Filter

  • Bae, Tae Wuk;Kim, Hwi Gang;Kim, Young Choon;Ahn, Sang Ho
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1023-1031
    • /
    • 2015
  • In infrared (IR) images, near targets have a transient distribution at the boundary region, as opposed to a steady one at the inner region. Based on this fact, this paper proposes a novel IR target extraction method that uses both a weighted information entropy (WIE) and an adaptive opening filter to extract near finely shaped targets in IR images. Firstly, the boundary region of a target is detected using a local variance WIE of an original image. Next, a coarse target region is estimated via a labeling process used on the boundary region of the target. From the estimated coarse target region, a fine target shape is extracted by means of an opening filter having an adaptive structure element. The size of the structure element is decided in accordance with the width information of the target boundary and mean WIE values of windows of varying size. Our experimental results show that the proposed method obtains a better extraction performance than existing algorithms.

Search for galaxy clusters in SA22

  • Kim, Jae-Woo;Im, Myungshin;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.83.1-83.1
    • /
    • 2012
  • The galaxy cluster is a good laboratory to test the cosmological model as well as the evolution of galaxies in the dense region. However the lack of wide and deep near-IR datasets has prevented to identify galaxy clusters at z>1. Here we merge a wide, deep near-IR datasets of UKIDSS DXS (J and K bands) and IMS (J band) with the CFHT Legacy Survey (CFHTLS) ugriz catalogue to detect galaxy clusters. We identify candidate galaxy clusters at z>0.8, where the near-IR dataset plays an important role to detect galaxies efficiently. The cluster mass is also estimated based on the cluster richness and the semi-analytical cosmological simulation.

  • PDF

Calibrating high-z QSO masses using near-IR and optical spectra

  • Kim, Phuong Thi;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2011
  • Using the newly commissioned Fiber-Multi-Object-Spectrograph at the Subaru telescope, we obtained near-IR spectra of a sample of 19 AGNs at 0.6 < z < 2.6, selected from the NOAO Deep Wide-Field Survey (NDWFS) Bootes field, in order to calibrate high-z black hole mass (MBH) estimators. MBHs are generally determined through the kinematics of ionized gas clouds around the black hole assuming virial equilibrium. The velocity profiles of $H{\beta}/H{\alpha}$, MgII and CIV are used to infer the gas kinematics of low-z, mid-z, and high-z quasars, respectively. However, the MBH based on MgII and CIV is not very well calibrated. We compare the $H{\alpha}$ - based MBH estimates from the new FMOS near-IR spectra, with the MgII-based MBH estimates from our existing optical spectra, and investigate the systematic differences.

  • PDF

The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning (Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.