• Title/Summary/Keyword: near field earthquake

Search Result 113, Processing Time 0.024 seconds

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Evaluation of Near-Fault Ground Motions by Inelastic Response Spectrum Analysis (비탄성 응답스펙트럼 분석을 통한 근거리 지진의 평가)

  • 김형규;최인길;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.69-76
    • /
    • 2003
  • Near-field ground motions exhibit special characteristics that are different from ordinary far-field ground motions. This paper first briefly examines the characteristics of near-field ground motions associated with fault directivity and fling-step effects. Then evaluation of near-field ground motions by inelatstic response spectrum analysis is performed and analyzed. As a result, ductility demand in near-field ground motions is larger in hanging wall than in foot wall in long period regions. Also in long period regions ductility demand in soil site is larger than that in rock site.

  • PDF

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Seismic vulnerability assessment of buildings based on damage data after a near field earthquake (7 September 1999 Athens - Greece)

  • Eleftheriadou, Anastasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.117-140
    • /
    • 2012
  • The proposed research includes a comprehensive study on the seismic vulnerability assessment of typical building types, representative of the structural materials, the seismic codes and the construction techniques of Southern Europe. A damage database is created after the elaboration of the results of the observational data obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake, a near field seismic event in an extended urban region. The observational database comprises 180.945 buildings which developed damage of varying degree, type and extent. The dataset is elaborated in order to gather useful information about the structural parameters influence on the seismic vulnerability and their correlation to the type and degree of building damages in near field earthquakes. The damage calibration of the observational data was based on label - damage provided by Earthquake Planning and Protection Organization (EPPO) in Greece and referred to the qualitative characterization for the recording of damage in post-earthquake surveys. Important conclusions are drawn on the parameters that influence the seismic response based on the wide homogeneous database which adds to the reliability of the collected information and reduces the scatter on the produced results.

Effects of pulse-like nature of forward directivity ground motions on the seismic behavior of steel moment frames

  • Mansouri, Iman;Shahbazi, Shahrokh;Hu, Jong Wan;Moghaddam, Salar Arian
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • In the structures with high level of ductility, the earthquake energy dissipation in structural components is an important factor that describes their seismic behavior. Since the connection details play a major role in the ductile behavior of structure, in this paper, the seismic response of 3-, 5- and 8-story steel special moment frames (SMFs) is investigated by considering the effects of panel zone modeling and the influence of forward-directivity near-field ground motions. To provide a reasonable comparison, selected records of both near and far-field are used in the nonlinear time-history analysis of models. The results of the comparison of the median maximum inter-story drift under excitation by near-field (NF) records and the far-field (FF) ground motions show that the inter-story drift demands can be obtained 3.47, 4.86 and 5.92 times in 3-, 5- and 8-story structures, respectively, undergoing near-field earthquakes.

Practical coherency model suitable for near- and far-field earthquakes based on the effect of source-to-site distance on spatial variations in ground motions

  • Yu, Rui-Fang;Abduwaris, Abduwahit;Yu, Yan-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.651-666
    • /
    • 2020
  • In this study, the spatial variation mechanisms of large far-field earthquakes at engineering scales are first investigated with data from the 2008 Ms 8.0 Wenchuan earthquake. And a novel 'coherency cut-off frequency' is proposed to distinguish the spatial variations in ground motions in the low-frequency and high-frequency ranges. Then, a practical piecewise coherency model is developed to estimate and characterize the spatial variation in earthquake ground motions, including the effects of source-to-site distances, site conditions and neighboring topography on these variations. Four particular earthquake records from dense seismograph arrays are used to investigate values of the coherency cut-off frequency for different source-to-site distances. On the basis of this analysis, the model is established to simulate the spatial variations, whose parameters are suitable for both near- and far-field earthquake conditions. Simulations are conducted to validate the proposed model and method. The results show that compared to the existing models, the proposed model provides an effective method for simulating the spatial correlations of ground motions at local sites with known source-to-site distances.

The effects of peak ground velocity of near-field ground motions on the seismic responses of base-isolated structures mounted on friction bearings

  • Tajammolian, H.;Khoshnoudian, F.;Talaei, S.;Loghman, V.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1259-1281
    • /
    • 2014
  • This research has been conducted in order to investigate the effects of peak ground velocity (PGV) of near-field earthquakes on base-isolated structures mounted on Single Friction Pendulum (SFP), Double Concave Friction Pendulum (DCFP) and Triple Concave Friction Pendulum (TCFP) bearings. Seismic responses of base-isolated structures subjected to simplified near field pulses including the forward directivity and the fling step pulses are considered in this study. Behaviour of a two dimensional single story structure mounting on SFP, DCFP and TCFP isolators investigated employing a variety range of isolators and the velocity (PGV) of the forward directivity and the fling step pulses as the main variables of the near field earthquakes. The maximum isolator displacement and base shear are selected as main seismic responses. Peak seismic responses of different isolator types are compared to emphasize the efficiency of each one under near field earthquakes. It is demonstrated that rising the PGVs increases the isolator displacement and base shear of structure. The effects of the forward directivity are greater than the fling step pulses. Furthermore, TCFP isolator is more effective to control the near field effects than the other friction pendulum isolators are. This efficiency is more significant in pulses with longer period and greater PGVs.