• Title/Summary/Keyword: nc-Si:H

Search Result 44, Processing Time 0.027 seconds

Synthesis and Characterization of Group 13 Compounds of 2-Acetylpyridine Thiosemicarbazone. Single-Crystal Structure of $(iC_4H_9)-2Al(NC_5H_4C(CH_3)$NNC(S)NHPh)

  • 강영진;강상옥;고재정;손정인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.65-68
    • /
    • 1999
  • Novel mononuclear group 13 metal complexes with the formula (R2M){NC5H4C(CH3)NNC(S)NH(C6H5)} (M=Al, R=iC4H9 (1); M=Ga, R=iC4H9 (2); M=Al, R=CH2SiMe3 (3); M=Ga, R=CH2SiMe3 (4)) result when 2-acetyl pyridine 4-phenyl-thiosemicarbazone ligand is mixed with trialkyl aluminum or trialkylgallium. These compounds 1-4 are characterized by microanalysis, NMR (1H, 13C) spectroscopy, mass spectra, and singlecrystal X-ray diffraction. X-ray single-crystal diffraction analysis reveals that 1 is mononuclear metal compound with coordination number of 5 and N, N, S-coordination mode.

저가 고효율 실리콘계 (protocrystalline Si/$\mu$c-Si:H) 적층형 박막 태양전지 개발

  • Im, Goeng-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.191-202
    • /
    • 2005
  • 비정질 실리콘 태양전지 대신에 열화가 더 적은 프로터결정 실리콘(pc-Si:H)을 상층전지 흡수층으로 사용한 고효율 실리콘계 적층형(pc-Si:H/$\mu$c-Si:H) 박막 태양전지를 개발하였다. 우선, 높은 전도도와 넓은 에너지 밴드갭 특성을 갖는 p-a-SiC:H 박막을 개발하였고, p/i 계면의 특성 향상을 위해 p-nc-SiC:H 완충층을 개발하였다. 프로터결정 실리콘 다층막을 제작하고 FTIR, 평면 TEM, 단면 TEM 측정을 통해 프로터결정 실리콘 다층막의 우수한 열화 특성의 원인을 규명하였다. 적층형 태양전지의 성능향상을 위해 n-p-p 구조의 터널접합을 제안, 제작하고 특성을 분석하였으며, pc-Si:H/a-Si:H 적층형 태양전지에 적용하여 성능향상을 이루었다. 양질의 하층전지용 마이크로결정 실리콘 박막을 증착하기 위하여 광CVD법과 플라즈마CVD법을 결합한 2단계 마이크로결정 실리콘 증착법을 개발하였다.

  • PDF

Effect of p16 on glucocorticoid response in a B-cell lymphoblast cell line

  • Kim, Sun-Young;Lee, Kyung-Yil;Jeong, Dae-Chul;Kim, Hak-Ki
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.7
    • /
    • pp.753-758
    • /
    • 2010
  • Purpose: It has been suggested that p16 has a role in glucocorticoid (GC)-related apoptosis in leukemic cells, but the exact mechanisms have yet to be clarified. We evaluated the relationship between the GC response and p16 expression in a lymphoma cell line. Methods: We used p16 siRNA transfection to construct p16-inactivated cells by using the B-cell lymphoblast cell line NC-37. We compared glucocorticoid receptor (GR) expression, apoptosis, and cell viability between control (p16+NC-37) and p16 siRNA-transfected (p16-NC-37) cells after a single dose of dexamethasone (DX). Results: In both groups, there was a significant increase in cytoplasmic GR expression, which tended to be higher for p16+NC-37 cells than for p16- NC37 cells at all times, and the difference at 18 h was significant (P<0.05). Similar patterns of early apoptosis were observed in both groups, and late apoptosis occurred at higher levels at 18 h when the GR had already been downregulated ($P$<0.05). Cell viability decreased in both groups but the degree of reduction was more severe in p16+NC-37 cells after 18 h ($P$<0.05). Conclusion: These results suggest a relationship between GR expression and cell cycle inhibition, in which the absence of p16 leads to reduced cell sensitivity to DX.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF