• Title/Summary/Keyword: navigation performance

Search Result 2,616, Processing Time 0.028 seconds

A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher (복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰)

  • Park, hin-Bae;Kim, Won-Jae;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.

DVI cable Improvement for Preventing MFD Abnormal Display of a Rotary-wing Aircraft (회전익 항공기 다기능시현기의 이상시현을 방지하기 위한 DVI 케이블 개선)

  • Kim, Young Mok;Jeong, Sang-Gyu;Cho, Jae Po;Choi, Doo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.782-789
    • /
    • 2018
  • Multi-Function Display (MFD) of Korean Utility Helicopter (KUH) displays image information(navigation, flight, topographical and maintenance information) delivered from Mission Computer (MC) during flight operation. The abnormal display of MFD such as flickering phenomenon was identified in the system development. It was solved by improving the shielding performance of the DVI cable and changing the DVI cable installation path at the first mass production. However, it was occurred again when the aircraft was operated for one or two years after delivery. It was also identified in the evaluation process of the derivative helicopters. Therefore, a comprehensive review of the aircraft system level has been performed to solve the problem of MFD malfunction at first and then a design improvement plan was derived by improving the DVI cable. In this paper, the causes of MFD anomalies are analyzed and also the process of design improvement are summarized. The validity of the improvement has been verified through the DVI cable assembly comparison test, SIL/ground/flight test.

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator (GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • In this paper, we developed the signal generator of GNSS navigation signals and analysis the performance of DCO(Digitally Clock Oscillator) compensation algorithm for cumulative distance error thorough simulation. In general, To generate a GNSS signal calculates the Doppler and Initial Pseudorange by using the location information of the receiver and the satellite. The GNSS signal generator generates a signal by determine the carrier and code output frequency using the Doppler information which is calculated as a function of time. The output frequency of the carrier and code would be used the DCO scheme. At this time, It extract the bit and code information on a for each sample by accumulating the DCO. an error of Pseudorange is generated by the cumulative error of the DCO. If Pseudorange error occurs, so that the influence to and operation of the receiver. Therefore, in this paper, we implemented the accumulated error compensation algorithm of the DCO to remove the accumulated error components DCO thereof, Pseudorange accumulated error is removed through the experiment, it was confirmed to be a high accuracy can be operated.

Development of Adaptive Moving Obstacle Avoidance Algorithm Based on Global Map using LRF sensor (LRF 센서를 이용한 글로벌 맵 기반의 적응형 이동 장애물 회피 알고리즘 개발)

  • Oh, Se-Kwon;Lee, You-Sang;Lee, Dae-Hyun;Kim, Young-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.377-388
    • /
    • 2020
  • In this paper, the autonomous mobile robot whit only LRF sensors proposes an algorithm for avoiding moving obstacles in an environment where a global map containing fixed obstacles. First of all, in oder to avoid moving obstacles, moving obstacles are extracted using LRF distance sensor data and a global map. An ellipse-shaped safety radius is created using the sum of relative vector components between the extracted moving obstacles and of the autonomuos mobile robot. Considering the created safety radius, the autonomous mobile robot can avoid moving obstacles and reach the destination. To verify the proposed algorithm, use quantitative analysis methods to compare and analyze with existing algorithms. The analysis method compares the length and run time of the proposed algorithm with the length of the path of the existing algorithm based on the absence of a moving obstacle. The proposed algorithm can be avoided by taking into account the relative speed and direction of the moving obstacle, so both the route and the driving time show higher performance than the existing algorithm.

A Study on the Development of the Active Radar Reflector with Enhanced Function (개선된 기능을 갖는 능동 레이더 반사기 개발에 관한 연구)

  • 정종혁;강상욱;조영창;최병진;윤정오;오주환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.38-43
    • /
    • 2000
  • Active radar reflector may be less familiar, since their uses have been limited to military applications, especially the enhancement of the effective radar cross-sections of missile test range in the drone aircraft and missiles. Perhaps the most widely-Down applications of radar transponders are Identification Friend or Foe(IFF) and its civilian counterpart secondary surveilliance radar for Air Traffic Control(ATC), and most recently, as Search And Rescue Transponder(SART) in the Global Maritime Distress and Safety System(GMDSS). Since it happens frequently accidents on the sea, the problems of the contamination more seriously considered. The conventional navigation buoy and utilities are not sufficient to maintain the safety of the sea and thus new structured concept must be considered. Therefore, this paper propose and implement the active radar reflector with a enhanced function. The results are shown that the performance of the system is significantly improved comparing with the conventional utilities.

  • PDF

Interactive ADAS development and verification framework based on 3D car simulator (3D 자동차 시뮬레이터 기반 상호작용형 ADAS 개발 및 검증 프레임워크)

  • Cho, Deun-Sol;Jung, Sei-Youl;Kim, Hyeong-Su;Lee, Seung-gi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.970-977
    • /
    • 2018
  • The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.

The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model (관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법)

  • Park, ByungSu;Han, KyungJun;Lee, SangWoo;Yu, MyeongJong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.438-445
    • /
    • 2019
  • In this paper, we present a new approach to extract the g-sensitivity scale-factor error for a MEMS gyroscope. MEMS gyroscopes, based on the use of both angular momentum and the Coriolis effect, have a g-sensitivity error due to mass unbalance. Generally, the g-sensitivity error is not considered in general use of gyroscopes, but it deserves our attention if we are to develop for tactical class performance and reliability. The g-sensitivity error during vehicle flight increases navigation error; so it must be analyzed and compensated for the use of MEMS IMU for high dynamics vehicle systems. Therefore, we analyzed how to extract the g-sensitivity scale-factor error from the inertial sensor error model. Furthermore we propose a new method to extract the g-sensitivity error using flight motion simulator. We verified our proposed method with experimental results.

Integrated Ship Cybersecurity Management as a Part of Maritime Safety and Security System

  • Melnyk, Oleksiy;Onyshchenko, Svitlana;Pavlova, Nataliia;Kravchenko, Oleksandra;Borovyk, Svitlana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.135-140
    • /
    • 2022
  • Scientific and technological progress is also fundamental to the evolving merchant shipping industry, both in terms of the size and speed of modern ships and in the level of their technical capabilities. While the freight performance of ships is growing, the number of crew on board is steadily decreasing, as more work processes are being automated through the implementation of information technologies, including ship management systems. Although there have been repeated appeals from international maritime organizations to focus on building effective maritime security defenses against cyber attacks, the problems have remained unresolved. Owners of shipping companies do not disclose information about cyberattack attempts or incidents against them due to fear of commercial losses or consequences, such as loss of image, customer and insurance claims, and investigations by independent international organizations and government agencies. Issues of cybersecurity of control systems in the world today have gained importance, due to the fact that existing threats concern not only the security of technical means and devices, but also issues of environmental safety and safety of life at sea. The article examines the implementation of cyber risk management in the shipping industry, providing recommendations for the safe ship operation and its systems in order to improve vulnerability to external threats related to cyberattacks, and to ensure the safety and security of such a technical object as a seagoing ship.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.