• 제목/요약/키워드: navigation augmentation

검색결과 147건 처리시간 0.027초

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

Navigation Performance Analysis of KASS Test Signals

  • Daehee Won;Eunsung Lee;Chulhee Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.369-377
    • /
    • 2023
  • This paper presents the analysis results of navigation performance of Korea Augmentation Satellite System (KASS) test signals. Performance analysis was performed with Global Positioning System (GPS) and Satellite Based Augmentation System (SBAS) signals received from 7 KASS reference stations. And the performances were analyzed in terms of the signal strength, statistics for each SBAS message, coverage of ionospheric correction, accuracy, integrity, continuity, and availability. In addition, the navigation solutions provided by commercial receiver was analyzed and the performance experienced by general users was presented. Lastly, directions for further improvement of the KASS system were addressed. These performance analysis results can be used to confirm the feasibility of utilizing KASS in user applications.

Ionospheric Storm and Spatial Gradient Analysis for GBAS

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Young-Jae;Jun, Hyang-Sig;Nam, Gi-Wook
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.361-365
    • /
    • 2006
  • High ionospheric spatial gradient during ionospheric storm is most concern for the landing approach with GNSS (Global Navigation Satellite System) augmentation systems. In case of the GBAS (Ground-Based Augmentation System), the ionospheric storm causes sudden increase of the ionospheric delay difference between a ground facility and a user (aircraft), and the aircraft position error increases significantly. Since the ionosphere behavior and the storm effect depend on geographic location, understanding the ionospheric storm behavior at specific regional area is crucial for the GNSS augmentation system development and implementation. Korea Aerospace Research Institute and collaborating universities have been developing an integrity monitoring test bed for GBAS research and for future regional augmentation system development. By using the dense GPS (Global Positioning System) networks in Korea, a regional ionosphere map is constructed for finding detailed aspect of the ionosphere variation. Preliminary analysis on the ionospheric gradient variation during a recent storm period is performed and the results are discussed.

  • PDF

Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석 (Performance Assessment of GBAS Ephemeris Monitor for Wide Faults)

  • 송준솔
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

한국형 가동헬기 임무탑재장비 요구항법성능 구현 (Required Navigation Performance Implementation of Mission Equipment Package for Korean Utility Helicopter)

  • 김성우;이병화;오우섭
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.798-804
    • /
    • 2011
  • A number of navigation improvements are envisaged : Differential GPS - WAAS, LAAS, and Performance Based Navigation. The GPS receiver verifies the integrity(usability) of the signals received from the GPS constellation through a process called receiver autonomous integrity monitoring(RAIM) to determine if a satellite is providing corrupted information. This paper describe the RAIM function and Performance-Based Navigation implementation of Mission Equipment Package(MEP) for Korean Utility Helicopter.

IGS 정밀궤도력을 이용한 SBAS 위성궤도 및 시계보정정보의 정확도 분석 (Accuracy Analysis of SBAS Satellite Orbit and Clock Corrections using IGS Precise Ephemeris)

  • 정명숙;김정래
    • 한국항행학회논문지
    • /
    • 제13권2호
    • /
    • pp.178-186
    • /
    • 2009
  • SBAS(Satellite Based Augmentation System) 시스템에서는 GNSS 사용자들의 위치 정확도 향상을 위해 위성궤도 및 시계보정정보를 제공하고 있는데, 본 논문에서는 이러한 보정정보의 정확도에 대해 분석하였다. IGS(International GNSS Service)에서 제공하는 GPS 위성의 정밀궤도력을 참값으로 가정하고, 그에 대한 오차를 이용하여 정확도를 분석/수행하였다. 이때 IGS 정밀궤도력과의 정확한 비교를 위해 GPS 위성에 대한 안테나 위상중심 편차와 P1-C1 편이를 고려하였다. SBAS 위성궤도 및 시계보정 정보로는 미국의 WAAS와 일본의 MSAS 보정정보를 이용하였다. 정확도 분석을 통해 SBAS에서 제공하는 위성궤도 보정정보와 위성시계 보정정보가 상당한 상관관계를 가지고 있음을 확인하였다. 또한 보정정보의 정확도는 SBAS 시스템의 지상 네트워크 크기와 위성의 궤적에 영향을 받는 것을 확인하였다.

  • PDF

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.

다목적 전 공역 위성항법보정시스템 개발 및 적용에 대한 연구 (A Study on the development and Implementation of Multi-purpose All Airspace Satellite Based Augmentation System (SBAS))

  • 이근영
    • 한국항공운항학회지
    • /
    • 제22권1호
    • /
    • pp.15-21
    • /
    • 2014
  • Modern aircraft air navigation has been changed from the conventional air navigation aid to utilizing Global Navigation Satellite System. For the air navigation of fast moving aircraft, GNSS required extremely high accuracy and reliability. This study reviews the basic concept of Satellite Based Augmentation System which is discussed in the International Working Group of International Civil Aviation Organization and status of some SBAS leading State's case. In addition to that, a progress of SBAS development and implementation in the Republic of Korea was reviewed with pointing out of general hurdles and counter measures.

Trend and Analysis of Protection Level Calculation Methods for Centimeter-Level Augmentation System in Maritime

  • Jaeyoung Song;TaeHyeong Jeon;Gimin Kim;Sang Hyun Park;Sul Gee Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.281-288
    • /
    • 2023
  • The International Maritime Organization (IMO) states that the recommended horizontal accuracy for coastal and offshore areas is 10 m, the Alert Limit (AL) is 25 m, the time to alert is 10 seconds, and the integrity risk (IR) is 10-5 per three hours. For operations requiring high accuracy, such as tugs and pushers, icebreakers, and automated docking, the IMO dictates that a high level of positioning accuracy of less than one meter and a protection level of 0.25 meters (for automated docking) to 2.5 meters should be achieved. In this paper, we analyze a method of calculating the user-side protection level of the centimeter-level precision Global Navigation Satellite System (GNSS) that is being studied to provide augmentation information for the precision Positioning, Navigation and Timing (PNT) service. In addition, we analyze standardized integrity forms based on RTCM SC-134 to propose an integrity information form and generate a centimeter-level precise PNT service plan.