• Title/Summary/Keyword: navigation augmentation

Search Result 150, Processing Time 0.024 seconds

Development and application of stent-based image guided navigation system for oral and maxillofacial surgery (구강외과 수술용 스텐트 기반 영상유도 수술 시스템의 개발)

  • Lee, Woo-Jin;Kim, Dae-Seung;Yi, Won-Jin;Lee, Sam-Sun;Choi, Soon-Chul;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Myung-Jin;Lee, Jee-Ho
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.149-156
    • /
    • 2009
  • Purpose : The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. Materials and Methods : We devised a patient-specific stent for patient-to-image registration and navigation. Three-dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. Results : The accuracy over 8 anatomical landmarks showed an overall mean of $0.56{\pm}0.16\;mm$. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. Conclusion : The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  • PDF

Analysis on Line-Of-Sight (LOS) Vector Projection Errors according to the Baseline Distance of GPS Orbit Errors (GPS 궤도오차의 기저선 거리에 따른 시선각 벡터 투영오차 분석)

  • Jang, JinHyeok;Ahn, JongSun;Bu, Sung-Chun;Lee, Chul-Soo;Sung, SangKyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.310-317
    • /
    • 2017
  • Recently, many nations are operating and developing Global Navigation Satellite System (GNSS). Also, Satellite Based Augmentation System (SBAS), which uses the geostationary orbit, is operated presently in order to improve the performance of GNSS. The most widely-used SBAS is Wide Area Augmentation System (WAAS) of GPS developed by the United States. SBAS uses various algorithms to offer guaranteed accuracy, availability, continuity and integrity to its users. There is algorithm for guarantees the integrity of the satellite. This algorithm calculates the satellite errors, generates the correction and provides it to the users. The satellite orbit errors are calculated in three-dimensional space in this step. The reference placement is crucial for this three-dimensional calculation of satellite orbit errors. The wider the reference placement becomes, the wider LOS vectors spread, so the more the accuracy improves. For the next step, the regional features of the US and Korea need to be analyzed. Korea has a very narrow geographic features compared to the US. Hence, there may be a problem if the three-dimensional space method of satellite orbit error calculation is used without any modification. This paper suggests a method which uses scalar values to calculate satellite orbit errors instead of using three-dimensional space. Also, this paper proposes the feasibility for this method for a narrow area. The suggested method uses the scalar value, which is a projection of orbit errors on the LOS vector between a reference and a satellite. This method confirms the change in errors according to the baseline distance between Korea and America. The difference in the error change is compared to present the feasibility of the proposed method.

Analysis and Compensation of Time Synchronization Error on SAR Image (시각 동기화 오차가 SAR 영상에 미치는 영향 분석 및 보상)

  • Lee, Soojeong;Park, Woo Jung;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.285-293
    • /
    • 2020
  • In this paper, to improve Synthetic Aperture Radar (SAR) image quality, the effect of time synchronization error in the EGI/IMU (Embedded GPS/INS, Inertial Measurement Unit) integrated system is analyzed and state augmentation is applied to compensate it. EGI/IMU integrated system is widely used as a SAR motion measurement algorithm, which consists of EGI mounted to obtain the trajectory and IMU mounted on the SAR antenna. In an EGI/IMU integrated system, a time synchronization error occurs when the clocks of the sensors are not synchronized. Analysis of the effect of time synchronization error on navigation solutions and SAR images confirmed that the time synchronization error deteriorates SAR image quality. The state augmentation is applied to compensate for this and as a result, the SAR image quality does not decrease. In addition, by analyzing the performance and the observability of the time synchronization error according to the maneuver, it was confirmed that the time-variant maneuver such as rotational motion is necessary to estimate the time synchronization error adequately. In order to reduce the influence of the time synchronization error on the SAR image, the time synchronization error must be compensated by performing maneuver changing over time such as a rotation before SAR operation.

A Site Environment Analysis of NDGPS Reference Stations Co-operating for SBAS (NDGPS 기준국의 SBAS 기준국으로의 공동 활용을 위한 기준국 환경 분석)

  • Han, Young-hoon;Park, Sul-gee;Park, Sang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1696-1703
    • /
    • 2016
  • In this paper, it verifies site environment aspect that NDGPS (Nationwide Differential Global Positioning System) operated by MOF (Ministry of Oceans and Fisheries) will be used as the same site of reference stations for SBAS (Satellite Based Augmentation System). In order to prove this feasibility, we analyze the site environment requirements for SBAS reference stations, as well as we establish the procedure for the verification of the site environment requirements. With this procedure of the site environment survey, we perform site survey in the real field and analyze the results. We select interim candidate sites for survey which currently operating 17 NDGPS reference stations. This paper could be utilized in the process of selection or installation of reference stations in the field of GNSS(Global Navigation Satellite System) and the drawing the consideration which NDGPS reference stations will be co-operated as SBAS reference stations.

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.

Design of Clock Synchronization Scheme for Pseudolite (의사위성 시각동기 기법 설계)

  • Lee, Ju Hyun;Hwang, Soyoung;Yu, Dong-Hui;Lee, Sang Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1312-1317
    • /
    • 2013
  • Pseudolite is a contraction of the term "pseudo-satellite", used to refer to something that is not a satellite which performs a function commonly in the domain of satellites. Pseudolite are most often small transceivers that are used to create a local, ground-based GPS alternative. Pseudo-range measurement of pseudolite has around 300m range error, when time synchronization error of $1{\mu}sec$ occurs. Therefore the time synchronization methods play an important part in navigation augmentation using pseudolite. This paper proposes three clock synchronization methods that are installation method of pseudolite station, method using KRISS-UTC and method using PRN code phase difference for pseudolite. The simulation platform structure is presented for evaluating proposed clock synchronization performance.

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.

An Environmental Analysis of Candidate SBAS Reference Station (위성기반 보강시스템 기준국 후보지의 환경 분석)

  • Han, Younghoon;Park, Sul Gee;Lee, Sangheon;Park, Sang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.685-688
    • /
    • 2016
  • SBAS(Satellite Based Augmentation System) broadcasts the correction message based on satellite communication to improve the positioning accuracy of GNSS user. For this reason, SBAS is actively being utilized on navigation part. To apply SBAS to navigation part, it should satisfy not only accuracy but also integrity, continuity, availability, coverage requirements and so on. Since SBAS reference station is the base infrastructure of SBAS, it is the main factor to determine the environment, position, and geometry of reference stations to achieve SBAS service performance. Therefore, a site environmental analysis should be performed prior to the selection of SBAS reference station. In this paper, it performs the environmental analysis of NDGPS(Nationwide Differential GPS) reference station sites on the premise that SBAS reference station will be co-operated in the same site of NDGPS operated by MOF(Ministry of Oceans and Fisheries). The environmental analysis is conducted as carrying out the visibility analysis of GPS satellite and interference analysis. This paper also presents the brief procedures and requirements for site survey of SBAS reference station.

  • PDF

Deep Learning Based Pine Nut Detection in UAV Aerial Video (UAV 항공 영상에서의 딥러닝 기반 잣송이 검출)

  • Kim, Gyu-Min;Park, Sung-Jun;Hwang, Seung-Jun;Kim, Hee Yeong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Pine nuts are Korea's representative nut forest products and profitable crops. However, pine nuts are harvested by climbing the trees themselves, thus the risk is high. In order to solve this problem, it is necessary to harvest pine nuts using a robot or an unmanned aerial vehicle(UAV). In this paper, we propose a deep learning based detection method for harvesting pine nut in UAV aerial images. For this, a video was recorded in a real pine forest using UAV, and a data augmentation technique was used to supplement a small number of data. As the data for 3D detection, Unity3D was used to model the virtual pine nut and the virtual environment, and the labeling was acquired using the 3D transformation method of the coordinate system. Deep learning algorithms for detection of pine nuts distribution area and 2D and 3D detection of pine nuts objects were used DeepLabV3+, YOLOv4, and CenterNet, respectively. As a result of the experiment, the detection rate of pine nuts distribution area was 82.15%, the 2D detection rate was 86.93%, and the 3D detection rate was 59.45%.

Generative Adversarial Network Model for Generating Yard Stowage Situation in Container Terminal (컨테이너 터미널의 야드 장치 상태 생성을 위한 생성적 적대 신경망 모형)

  • Jae-Young Shin;Yeong-Il Kim;Hyun-Jun Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.383-384
    • /
    • 2022
  • Following the development of technologies such as digital twin, IoT, and AI after the 4th industrial revolution, decision-making problems are being solved based on high-dimensional data analysis. This has recently been applied to the port logistics sector, and a number of studies on big data analysis, deep learning predictions, and simulations have been conducted on container terminals to improve port productivity. These high-dimensional data analysis techniques generally require a large number of data. However, the global port environment has changed due to the COVID-19 pandemic in 2020. It is not appropriate to apply data before the COVID-19 outbreak to the current port environment, and the data after the outbreak was not sufficiently collected to apply it to data analysis such as deep learning. Therefore, this study intends to present a port data augmentation method for data analysis as one of these problem-solving methods. To this end, we generate the container stowage situation of the yard through a generative adversarial neural network model in terms of container terminal operation, and verify similarity through statistical distribution verification between real and augmented data.

  • PDF