• Title/Summary/Keyword: navier method

Search Result 1,242, Processing Time 0.022 seconds

Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor (왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung;Park, Jaeseong;Kim, Haeseung;Lee, Hyojae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

A Study on Wave Run-up Height and Depression Depth around Air-water Interface-piercing Circular Cylinder

  • Koo, Bon-Guk;Park, Dong-Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • In this paper, the wave run-up height and depression depth around air-water interface-piercing circular cylinder have been numerically studied. The Reynolds Averaged Navier-Stokes equations (RANS) and continuity equations are solved with Reynolds Stress model (RSM) and volume of fluid (VOF) method as turbulence model and free surface modeling, respectively. A commercial Computational Fluid Dynamics (CFD) software "Star-CCM+" has been used for the current simulations. Various Froude numbers ranged from 0.2 to 1.6 are used to investigate the change of air-water interface structures around the cylinder and experimental data and theoretical values by Bernoulli are compared. The present results showed a good agreement with other studies. Kelvin waves behind the cylinder were generated and its wave lengths are longer as Froude numbers increase and they have good agreement with theoretical values. And its angles are smaller with the increase of Froude numbers.

Cavitating-Flow Characteristics around a Horn-Type Rudder (혼 타 주위의 캐비테이팅 유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seak-Ho;Kim, Jung-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors

  • Shamsi, Reza;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.287-301
    • /
    • 2013
  • The present paper deals with the problems of yaw angle effects on podded propulsor performance. The study aims at providing insights on characteristics of podded propulsors in azimuthing condition. In this regard, a wide numerical simulation that concerned yaw angle effect measurement on podded propeller performance was performed. The Reynolds-Averaged Navier Stokes (RANS) based solver is used in order to study the variations of hydrodynamic characteristics of podded propulsor at various angles. At first, the propeller is analyzed in open water condition in absence of pod and strut. Next flow around pod and strut are simulated without effect of propellers. Finally, the whole unit is studied in zero yaw angle and azimuthing condition. Structured and unstructured mesh techniques are used for single propeller and podded propulsor. The performance curves of the propeller obtained by numerical method are compared and verified by the experimental results. The characteristic parameters including the torque and thrust of the propeller, the axial force and side force of unit are presented as function of velocity advance ratio and yaw angle. The results shows that the propeller thrust, torque and podded unit forces in azimuthing condition depend on velocity advance ratio and yaw angle.

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks (3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구)

  • Park, S.K.;Kim, K.W.;Ryou, H.S.;Choi, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.

Numerical study of particle dispersion from a power plant chimney (발전소 굴뚝에서의 입자 분산에 대한 수치해석)

  • Shim, Jeongbo;You, Donghyun
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.173-182
    • /
    • 2017
  • An Eulerian-Lagrangin approach is used to compute particle dispersion from a power plant chimney. For air flow, three-dimensional incompressible filtered Navier-Stokes equations are solved with a subgrid-scale model by integrating the Newton's equation, while the dispersed phase is solved in a Lagrangian framework. The velocity ratios between crossflow and a jet of 0.455 and 0.727 are considered. Flow fields and particle distribution of both cases are evaluated and compared. When the velocity ratio is 0.455, it demonstrates a Kelvin-Helmholtz vortex structure above the chimney caused by the interaction between crossflow and a jet, whereas the other case shows flow structures at the top of the chimney collapsed by fast crossflow. Also, complex wake structures cause different particle distributions behind the chimney. The case with the velocity ratio of 0.727 demonstrates strong particle concentration at the vortical region, whereas the case with the velocity ratio of 0.455 shows more dispersive particle distribution. The simulation result shows similar tendency to the experimental result.

Numerical Assessment for Coastal Water Purification Utilizing a Tidal Jet System (조석분류를 이용한 연안해역의 수질정화에 관한 수치적 평가)

  • Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.58-63
    • /
    • 2006
  • When the costal zone surrounded by a breakwater has a narrow vertical opening, currents in the vicinity of a narrow entrance can result in a jet flow, coinciding with the tide. Such a Tidal-Jet Generator(TJG) can change the water mass distribution and transport processes in the domain of influence of the jet. Also, it can decrease the residual time of them. In the present study, the water purification utilizing tidal jets in the coastal zone over constant bathymetry are estimated numerically, using a finite-difference numerical scheme, named the NS-MAC-TIDE method, which isbased on the fully 3D Navier-stokes(NS) equations. The shear velocity near the inlet of the TJG are predicted from the flow field simulation, and are assessed qualitatively with the development of scouring or sediment that is caused by the change of diffusion or sweeping flowup from the seabed of sediment particles. Finally, through solving a transport equation of concentration, the residual time related on mass transport processes and the flushing mechanism for water purification are investigated.

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.