• Title/Summary/Keyword: naval vessel

Search Result 576, Processing Time 0.029 seconds

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

Analysis of Marine Vessel Collision Risk based on Quantitative Risk Assessment

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.319-324
    • /
    • 2018
  • The collision problem is one of the design factors that must be carefully considered for the risk of collision occurring during the operation of ships and offshore structures. This paper presents the main results of the ship collision study, and its main goal is to analyze potential crash scenarios that may occur in the FLNG (Floating Liquefied Natural Gas) considering the likelihood and outcome. Consideration being given to vessels visiting the FLNG and surrounding vessels navigating around, such as functionally supported vessels and offloading carriers. The scope includes vessels visiting the FLNG facility such as in-field support vessels and off-loading carriers, as well as third party passing vessels. In this study, based on QRA (quantitative risk assessment), basic research methods and information on collision are provided. Based on the assumptions and methodologies documented in this study, it has been possible to clarify the frequency of collision and the damage category according to the type of visiting ship. Based on these results, the risk assessment results related to the collision have been derived.

Analysis for the Effect of the Misalignment of the Power Line from the Displacement Caused by the Ship Motion of the Main Propulsion System (선체운동에 의한 주추진계의 변위가 동력축의 축 어긋남에 미치는 영향 분석)

  • Han, Hyung-Suk;Lee, Kyung-Hyun;Cho, Heung-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Since the engine and reduction gear in a naval vessel are usually supported by the mounting system separately, the misalignment between the input shaft of the reduction gear and the output shaft of the engine should occur caused by ship motion. In this study, this misalignment is estimated from the linear static analysis assuming that the phase of movements of the engine and reduction gear at low frequency range is same and the dynamic effect is not affect to them. Through comparing the relative displacement of the engine and reduction gear calculated from linear static analysis to that from dynamic analysis as well as experiment, the assumption in this study could be verified.

A Study on the Electric Field Source Modeling of Naval Vessel Utilizing Material Sensitivity (매질 민감도를 이용한 함정 전기장 신호원 모델링에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin;Jung, Gi-Woo;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.658_659
    • /
    • 2009
  • This paper deals with the numerical implementation of the material sensitivity analysis, which is used to efficiently determine an optimal electric current distribution on a ship hull by corrosion of ship. A material sensitivity formula for the forward problem formulated in terms of the equivalent current method is analytically derived. Then, the components of the adjoint system including the electric pseudo-source are thoroughly investigated in order to obtain the first-order gradient information of an objective function with respect to the electric current. The purposed method has been successfully applied to a model ship and the predicted result on the underwater electric field due to corrosion of ship have been compared to that computed by FNREMUS software.

  • PDF

Effect of Structural Elasticity on Slamming Against Wetdecks of Multihull Vessels

  • Kvalsvold, Jan;Faltinsen, Odd M.;Aarsnes, Jan V.
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Hydroelastic slamming against the wetdeck of a multihull vessel is studied numerically and experimentally. The beam equations and a two-dimensional flow model are used to find the dynamic stresses in longitudinal stiffeners between two transverse stiffeners. The largest stresses in the structure occur in the time scale of the lowest wet natural period of the beam. A simple relation between the maximum stress, the local geometry and the impact velocity of the wetdeck is established. The stresses in the wetdeck are neither sensitive to the radius of curvature of the waves nor where the waves initially hit the wetdeck. It is concluded that the maximum impact pressure should not be used to find maximum bending stresses during wetdeck slamming.

  • PDF

The Durability of Ships Considering Fatigue Cracking

  • Liu, Donald;Thayamballi, Anil
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.57-72
    • /
    • 1997
  • The larger trends related to cracking in ocean going vessels (primarily tankers and bulk carriers) are reviewed on the basis of available data. The typical interrelated causes of such cracking are: high local stresses, extensive use of higher strength steels, inadequate treatment of dynamic loads, adverse operational factors (harsh weather, improper vessel handling), and controllable structural degradation (corrosion, wear, stevedore damage). Three consequences of cracking are then discussed: structural failure, pollution, and increased maintenance. The first two, while rare, are potentially of high consequence including loss of life. The types of solutions that can be employed to improve the durability of ships in the face of fatigue cracking are then presented. For existing vessels, these solutions range from repairs based on structural analysis or service experience, control of corrosion, and enhanced surveys. For new vessels, the use of advanced design procedures that specifically address dynamic loads and fatigue cracking is necessary. As the preferred solution to the problem of cracking in ships, this paper advocates prevention by explicit design by first principles.

  • PDF

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

A Practical Method of Prediction of Resistance for Displacement Vessels

  • Doctors, Lawrence J.
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 1997
  • The prediction of the total resistance of a ship is generally based on considering it to be a simple sum of the viscous resistance and the wave resistance. An experimental approach for predicting full-size ship resistance on this basis is practical but obviously has the deficiency that a model has to be built for each prototype of interest and the resulting tank tests are time consuming. On the other hand, purely theoretical calculations of the wave resistance, using, for example, the Michell theory, require relatively little computer time and give an excellent portrayal of the overall variation of the vessel resistance as a function of forward speed. Unfortunately, there are sufficient differences between this theory and the measured results to make this method impractical for design purposes. The proposal examined here is to use a data bank of experimental resistance results to modify the theoretical predictions. It is demonstrated that the technique will produce remarkably accurate resistance predictions and can take into account the effects of the water depth, any restriction of canal or river width, as well as the prismatic coefficient, and other geometric parameters.

  • PDF

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

Development of the Anti-vibration Base for the Onboard Equipment of the Naval Vessel Using Sandwitch Panel (샌드위치 패널을 이용한 함정탑재장비용 방진 베이스 개발)

  • Han, HyungSuk;Lee, KyoungHyun;Park, SungHo;Wi, YangHyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.365-374
    • /
    • 2016
  • The underwater radiated noise can be reduced by decreasing the structure borne noise of the on-board equipment. Therefore, the structure borne noise of the onborad installed equipment is strongly restricted by ROK navy with MIL-Std 740-2. Usually, the vibration transmissibility from the equipment to the hull of the ship is dependent on its mount characteristics. Even though the double mount structure is proper to apply for ship board application rather than single mount, it is not widely applied due to the weight and volume resriction of the ship. Therefore, in this research, the base using sandwitch panel which can act as double mount structure is suggested and its noise reduction capacity is verified with analytic calculation as well as experiment.