• 제목/요약/키워드: natural yeast

검색결과 437건 처리시간 0.022초

Screening and Characterization of Thermotolerant Alcohol-producing Yeast

  • Sohn, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권3호
    • /
    • pp.215-221
    • /
    • 1994
  • Two strains of yeast (RA-74-2 and RA-912) showing superior fermenting ability at a high temperature were isolated from soils and wastewaters by an enrichment culture method. Based on the morphological and physiological charateristics, the two strains were identified as Saccharomyces cerevisiae and Kluyveromyces marxianus, respectively. RA-74-2 was able to grow upto $43^{\circ}C$ and sustain similar fermenting ability in the temperatures range from 30 to $40^{\circ}C$. In addition, the sugar- and ethanol-tolerance of RA-74-2 were 30% (w/v) glucose and 10% (v/v) ethanol, which appeared to be higher than those of nine other industrial yeast strains currently being used in the alcohol factories. The thermotolerant ethanol fermenting yeast RA-912 showed identical growth in the temperatures range from 35 to $45^{\circ}C$ and was resistant to various heavy metals. The quality and quantity of byproducts of the isolated yeast strains in fermentation broth after fermentation at $40^{\circ}C$ and $45^{\circ}C$ were similiar with those obtained at $30^{\circ}C$. These results show that RA-74-2 can be adopted for the ethanol fermentation process where the expenses for cooling system is significant, and suggest that RA-912 may be applied in either SSF(simultaneous saccharification and fermentation) or Flash-fermentation process and RA-912 may be used as a gene donor for the development of thermotolerant ethanol-fermenting yeasts.

  • PDF

형질전환효모를 이용한 내분비계장애물질검색과 Nonylphenol의 Estrogen 유사작용에 대한 DEHP의 상협작용 (Modification of Estrogenic Effect of Nonylphenol Combined with DEHP in Yeast-based Bioassay)

  • 박미선;정해관;박현신;한의식;김종원;엄미옥;정상희;오혜영
    • Toxicological Research
    • /
    • 제17권1호
    • /
    • pp.65-71
    • /
    • 2001
  • The key targets of endocrine disruptors are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. A yeast-based steroid hormone receptor gene trascription assay was previously developed for the evaluation of chemicals with endocrine modulating activity. The yeast transformants used in this assay contain the human estrogen receptor along with the appropriate steroid response elements upstream of the $\beta$-galactosidase reporter gene. We tried to evaluate several natural and synthetic steroids of their potential to interact directly with the steroid receptor. Some putative endocrine disruptors, including nonylphenol, are weakly estrogenic. But the combined treatment oj these chemicals with di-(2-ethylhexyl)phthalate (DEHP) significantly increased the $\beta$-galactosidase activity in the yeast transformant. These results suggest that we also have to consider the synergistic effects of endocrine disruptors. In this study, we showed that yeast-based bioassay is a valuable tool for screening potential endocrine disruptors and quantitative determination of estrogenicity. And the possibility that the estrogen receptor binds multiple environmental chemicals adds another level of complexity to the interaction between the endocrine disruptors and the human hormone system.

  • PDF

Identification and Characterization of pH-Regulated Genes in Saccharomyces cerevisiae

  • Hong, Sung-Ki;Choi, Eui-Yul
    • Journal of Microbiology
    • /
    • 제34권4호
    • /
    • pp.327-333
    • /
    • 1996
  • Yeast, like many other microbes, encounters large variations in ambient pH in their natural environments. Microorganisms capable of growing over a wide pH range require a versatile, efficient pH homeostatic mechanism protecting intracellular processes against extremes of pH. In several organisms, fusions to the bacterial lacZ gene have been extremely useful for the identification of genes expressed at different time during the life cycle or under different growth conditions. In this study, using the lacZ gene screening system, we surveyed a large number of yeast strains with lacZ insertion to identify genes regulated by pH. A yeast genomic library was constructed and inserted with lacZ by a shuttle mutagenesis procedure. The yeast transformants were individually picked up with a toothpick, replica-plated, and grown in alkaline pH medium. Among the 35,000 colonies screened, 10 candidate strains were identified initially by the $\beta$-gal assay. We finally confirmed two yeast strains carrying the genes whose expression are strictly dependent on pH of growth medium. One of the fusions showing a 10-fold induction in expression level in response to alkali pH was selected and further characterized. The pH-regulated gene was cloned by inverse PCR and a partial sequence of the gene was determined. Identification and characterization of the gene is currently under investigation.

  • PDF

Identification of a Regulatory Element Required for 3’-End Formation in Transcripts of rhp51$^+$, a recA Homolog of the Fission Yeast Schizosaccharomyces pombe

  • Yeun Kyu Jang
    • Animal cells and systems
    • /
    • 제3권4호
    • /
    • pp.413-415
    • /
    • 1999
  • Our previous report demonstrated that the rhp51$^+$, a recA and RAD51 homolog of the fission yeast, encodes three transcripts of 1.9, 1.6 and 1.3 kb which have at least six polyadenylation sites. The 3'-end of the gene alone can direct the formation of multiple, discrete 3'ends of the transcripts. To identify the regulatory element required for the 3'-end formation of -rhp51$^+$ deletion mapping analysis was performed. Northern blot analysis revealed that the 254-bp DNA fragment including 4 distinct poly (A) sites downstream from the Hindlll site, is crucial for normal 3'-end formation. Deletion of the 3'-terminal AU rich region caused appearance of read-through RNA, leading to enhancement of survival rate of the rhp51 deletion mutant in response to DNA damaging agent, methylmethane sulfonate (MMS). The results imply that the rhp51$^+$ system may be useful for molecular analysis of the 3'-end formation of RNA in the fission yeast.

  • PDF

p-Coumaroylamino Acids from Yeast-Elicited Ephedra distachya Cultures

  • Song, Kyung-Sik;Sankawa, Ushio;Ebizuka, Yutaka
    • Archives of Pharmacal Research
    • /
    • 제17권1호
    • /
    • pp.48-50
    • /
    • 1994
  • Three p-coumaroylamino acids (p-CAAs) were isolated from the yeast-elicited Ephedra distachya cultures by consecutive purification using XAD_2, silicagel and RP-HPLC. Retention times on HPLC as well as their UV, IR, NMR and MS spectral data indicated that the yeast-induced p-CAAs wre p-coumaroyl--D-valine, p-coumaroyl-D-serine and p-coumarouyl-D-threonine, respectively. The structures of p-CAAs were confirmed by the comparison of their physico-chemical properties 3with those of synthetic ones. They were isolated and identified for the first time from natural products and supposed to be accumulated as phytoalexins of Ephedra.

  • PDF

효소 분해법에 의한 맥주효모 추출물의 제조 (Production of Brewer's Yeast Extract by Enzymatic Method)

  • 이시경;박경호;백운화;유주현
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.276-280
    • /
    • 1993
  • Cell lytic enzyme, 5'-phosphodiesterase, and AMP-deaminase were used to produce yeast extract as a natural seasoning from beer yeast cells. Prior to the addition of cell lytic enzyme, heat treatment was performed to increase the cell wall degradation` the optimum condition of the cell lytic enzyme was 50C at pH 7.0. The production yields by the enzymatic method and conventional autolysis method were 42% and 35%, respectively. The total quantity of 5'-nucleotides, GMP and IMP, produced by enzymatic method was increased by 45% than that by the conventional method. Futhermore, the operation time of enzymatic method was only 6.5 hrs, significantly reduced from 24 hrs of the conventional method.

  • PDF

Inhibition of Yeast Film Formation in Fermented Vegetables by Materials Derived from Garlic Using Cucumber Pickle Fermentation as a Model System

  • Le-Dinh, Hung;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.469-473
    • /
    • 2006
  • Film-forming yeasts generate an undesirable yeasty flavor in fermented vegetables such as kimchi in the presence of oxygen. Antimicrobial materials including garlic oil (GO), heated garlic (HG), and allyl alcohol (AA) were investigated for use as alternative natural food preservatives to inhibit the growth of film-forming yeasts in fermented vegetables. Using the fermentation of cucumber pickles as a model system, GO, HG, and AA were effective in preventing film formation at concentrations of 0.006, 3.0, and 0.02%, respectively. The effectiveness of HG in preventing the growth of a film yeast, Hansenula anomala, was not influenced by pH, while that of potassium sorbate, a typical anti-yeast food preservative, was highly dependent on pH. All tested materials were effective when added at the beginning of fermentation due to their negligible inhibitory activity toward lactic acid bacteria.

Cloning of the Alkaline Phosphatase Gene from Kluyveromyces fragilis

  • Kim, Jong-Guk;Hwang, Seon-Kap;Kwon, Kaeg-Kyu;Nam, Joo-Hyun;Hong, Soon-Duck;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권4호
    • /
    • pp.237-242
    • /
    • 1992
  • In order to clone the gene coding for alkaline phosphatase in the yeast Kluyveromyces fragilis, a genomic library was constructed using the yeast-E. coli shuttle vector pHN114 as a cloning vector. From the genomic library, a clone carrying the gene was isolated and the plasmid was designated as pSKH101. A restriction enzyme map was made using this plasmid. Subcloning experiments and complementation studies showed that alkaline phosphatase was active only in the original 3.1 kb insert. Southern hybridization analysis confirmed that the cloned DNA fragment was derived from K. fragilis genomic DNA. Using a minicell experiment, the product of the cloned gene was identified as a protein with a molecular weight of 63 KDa. A 0.6 kb HindIII fragment, which showed promoter activity, was isolated using the E. coli promoter-probe vector pKO-1.

  • PDF

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF