• Title/Summary/Keyword: natural vibration characteristics

Search Result 1,091, Processing Time 0.026 seconds

A Study on the Weight Reduction of the Steering Pump Bracket (스티어링 펌프 브라켓의 경량화에 관한 연구)

  • Kim, Wan-Du;Han, Seung-U
    • 연구논문집
    • /
    • s.28
    • /
    • pp.13-20
    • /
    • 1998
  • The power steering pump bracket for a passenger car which is mounted on the engine block plays a role to support the inertia forces of the pump and the reaction forces of the belt assembly. The existing bracket which is made of FCD material has some demerits such as heavy weight, lower productivity and lower reliability. Recently, AI alloy bracket has been investigated to overcome these demerits. In this study, Stress analysis and modal analysis for a existing FCD bracket and two type of AI alloy brackets were performed, and strength and natural frequency of them were estimated by using finite element method to accomplish the weight reduction. As a result, the modified shape of AI alloy bracket is proposed, and it has achieved the 45% weight reduction and the improvement of its strength and vibration characteristics.

  • PDF

The Effect of Loading Conditions on Ship Vibration Characteristics (선박(船舶)의 적화상태(積貨狀態)가 선체진동(船體振動) 특성(特性)에 미치는 영향)

  • K.C.,Kim;M.K.,Kwak;H.M.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-33
    • /
    • 1983
  • The loading condition, of a ship, especially a multi-purpose cargo carrier, in service, is often changed. Then, the prediction of natural frequency changes is necessary to provide measures for prevention of ship vibrations. In this paper a simplified method for the above purpose is presented. The bases of the method are analytical solutions for the lateral vibrations of uniform Timoshenko beams carrying a concentrated mass and the Dunkerley's formula. In this method a ship in the standard ballast condition is reduced to a uniform Timoshenko beam having same system parameters as those of the midship section. To investigate the validity of the proposed method, numerical calculations are carried out for a 46,000 DWT bulk carrier and compared with detailed calculations based on the finite difference method. Even in cases those the cargoes in a hold, length of which is about 13% of the ship's length, are reduced to a concentrated mass, the proposed method gives results of several percent differences from the detailed calculations up to the six-noded mode.

  • PDF

Field Observation and Analysis of Subspan Oscillatron in 4 Bundled Conductor Transmission Lines (가공송전선로의 서브스판 진동에 대한 실험 및 실측 분석)

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Lee, Dong-Il;Min, Byoung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.525-527
    • /
    • 2003
  • This paper presents a collection of a number of observations made on 4 bundled conductor transmission lines concerning the behaviour of conductors under the effect of natural winds. Namely in order to know the wind-induced vibration status and study wind-induced vibrations have been recorded and analyzed form the real transmission lines. By the field observation and analysis results, subspan oscillations among the wind-induced vibrations is known to be the main type of the vibrations. And some common characteristics of the observation sites, which have had high maintenance rate, can be found from the data also. It is considered that the main results described in this paper will be useful data and be used in controlling the subspan oscillations and protecting the conductors.

  • PDF

A generalized algorithm for the study of bilinear vibrations of cracked structures

  • Luo, Tzuo-Liang;Wu, James Shih-Shyn;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • Structural cracks may cause variations in structural stiffness and thus produce bilinear vibrations to structures. This study examines the dynamic behavior of structures with breathing cracks. A generalized algorithm based on the finite element method and bilinear theory was developed to study the influence of a breathing crack on the vibration characteristic. All the formulae derived in the time domain were applied to estimate the period of the overall bilinear motion cycle, and the contact effect was considered in the calculations by introducing the penetration of the crack surface. Changes in the dynamic characteristics of cracked structures are investigated by assessing the variation of natural frequencies under different crack status in either the open or closed modes. Results in estimation with vibrational behavior variation are significant compared with the experimental results available in the literature as well as other numerical calculations.

Numerical Prediction of Thermoacoustic Instability in Rijke Tube Using Non-linear Model for Heat Source (비선형 열원모델을 이용한 Rijke tube 내열음향 불안정 곡선의 수치예측기법)

  • Song, Woo-Seog;Lee, Seung-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2524-2529
    • /
    • 2008
  • The thermal system like a combustion chamber is believed to experience a significant instability problem with vibration in case that the thermal energy or the acoustic energy are transformed into a different form through a relevant path. This study deals with a numerically- predicted, Thermoacoustic instability in a Rijke tube by using a non-linear model for a heat source. The heating part where the energy transformation occurs actively is modeled after simulating two-dimensional cylinder case with constant surface temperature, and a nonlinear model that accounts for the transfer function of magnitude- and phase-characteristics is properly implemented so as to be dependent on the pulsation strength in the tube. The heat source model is observed to result in equivalent Thermoacoustic instabilities in the Rijke tube except low flow-rate cases in which the natural convection is dominant.

  • PDF

Near-Optimal Parameters of Three Span Continuous Beams subjected to a Moving Load (이동하중이 작용하는 3경간 연속보의 근사 최적제원)

  • 이병규;오상진;모정만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.139-146
    • /
    • 1997
  • The main purpose of this paper is to investigate the near-optimal parameters of continuous beam subject to a moving load. The computer-aided optimization technique is used to obtain the near-optimal parameters. The computer program is developed to obtain the natural frequency parameters and the forced vibration responses to a transit point load for the continuous beam with variable support spacing, mass and stiffness. The optimization function to describe the design efficiency is defined as a linear combination of four dimensionless span characteristics: the maximum dynamic stress; the stress difference between span segments; the rms deflection under the transit point load; and the total span mass. Studies of three span beams show that the beam with near-optimal parameters can improve design efficiency by 12 to 24 percent when compared to a reference configuration beams of the same total span length.

  • PDF

Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings (공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계)

  • Kim, Young-Cheol;Han, Jung-Wan;Kim, Kyung-Woong;Kim, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Monitoring and performance assessment of a highway bridge via operational modal analysis

  • Reza Akbari;Saeed Maadani;Shahrokh Maalek
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.191-205
    • /
    • 2023
  • In this paper, through operational modal analysis and ambient vibration tests, the dynamic characteristics of a multi-span simply-supported reinforced concrete highway bridge deck was determined and the results were used to assess the quality of construction of the individual spans. Supporting finite element (FE) models were created and analyzed according to the design drawings. After carrying out the dynamic tests and extracting the modal properties of the deck, the quality of construction was relatively assessed by comparing the results obtained from all the tests from the individual spans and the FE results. A comparison of the test results among the different spans showed a maximum difference value of around 9.3 percent between the superstructure's natural frequencies. These minor differences besides the obtained values of modal damping ratios, in which the differences were not more than 5 percent, can be resulted from suitable performance, health, and acceptable construction quality of the bridge.

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.

Investigation of FIV Characteristics on a Coaxial Double-tube Structure (동심축 이중관 구조에서 유동기인진동 특성 고찰)

  • Song, Kee-Nam;Kim, Yong-Wan;Park, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1108-1118
    • /
    • 2009
  • A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of $950^{\circ}C$ for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.