• 제목/요약/키워드: natural substrates

검색결과 232건 처리시간 0.019초

Recognition of substrates by membrane potential

  • Yun, Kyu-sik;Tak, Tae-moon;Kim, Jong-ho
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.31-35
    • /
    • 1998
  • 1. INTRODUCTION : Recognition and binding of organic substrates by biological molecules are of vital importance in biophysics and biophysical chemistry. Most studies of the application focused on the development of biosensors, which detected reaction products generated by the binding between enzymes and substrates. Other types of biosensors in which membrane proteins (e.g., nicotinic acetylcholine receptor, auxin receptor ATPase, maltose bining protein, and glutmate receptor) were utilized as a receptor function were also developed. In the previous study[1], the shifts in membrane potential, caused by the injection of substrates into a permeation cell, were measured using immobilized glucose oxidase membranes. It was suggested that the reaction product was not the origin of the potential shifts, but the changes in the charge density in the membrane due to the binding between the enzyme and the substrates generated the potential shifts. In this study, $\gamma$-globulin was immobilized (entrapped) in a poly($\gamma$-amino acid) network, and the shifts in the membrane potential caused by the injection of some amino acids were investigated.

  • PDF

돼지 간 및 정소에서 단백질 카르복실메칠화 현상 (Protein Carboxyl Ο-Methylation in Porcine Liver and Testis)

  • 조재열;김성수;이향우;홍성렬
    • 약학회지
    • /
    • 제45권1호
    • /
    • pp.46-54
    • /
    • 2001
  • Protein carboxyl Ο-methylation is a kind of enzymatic reaction producing carboxyl methylester catalyzed by protein carboxyl Ο-methyltransferases at the carboxyl group of amino acid residues in polypeptide. Since the finding of carboxyl methylesterl many studies have been focused on the under-standing of biological functions in eukaryotes but still not clear except for roles in Ras attachment to membrane and protein repair. In this study, we investigated the protein carboxyl methylation in porcine liver and testis in respect of identification and characterization of carboxyl methylesters and natural proteinous substrates using pH stability of the esters and electrophoresis under acidic and basic conditions. We detected several kinds of methyl esters, 3 kinds each in cytosolic fractions from liver and testis. Under the treatment of strong acid and base, the ratio between base-stable substrates and unstable ones in liver (4 : 6) was different from the ratio obtained in testis (6 : 4). The methyl accepting capacities were affected by enzymatic proteolysis between the range of 55 to 65% in liver and of 35 to 45% in testis. Separation of the methylated proteins by acidic electrophoresis in the presence of urea and SDS revealed distinctively natural substrates of 26, 33 and 80 kD in the cytosol from liver and of 14, 25, 32 and 86 kD from testis. Most of the labelling, however were lost following electrophoresis under moderate alkaline condition, except for molecules of newly detected 7 and 17 kD in livers and 15, 29, 40 and 80 kD in testis. From these results, it was proposed that protein carboxyl Ο-methylation in each organs may be catalyzed by different classes of protein carboxyl Ο-methyltransferases. In addition, it is suggested that the protein carboxyl methylation in liver and testis may have different patterns in respect of natural substrates.

  • PDF

Aspergillus nidulans 의 섬유질 분해효소계 생합성에 미치는 기질의 공조효과 (Synergistic Effect of Substrates on the Biosynthesis of Cellulase and Xylanase Complexes from Aspergillus nidulans)

  • 이정애;맹진수;맹필재;이영하
    • 한국균학회지
    • /
    • 제17권2호
    • /
    • pp.57-65
    • /
    • 1989
  • Cellulose와 hemicellulose의 단일 유도기질과 그 혼합물을 이용하여 Aspergillus nidulans의 섬유질 분해효소계의 유도 특이성을 조사하였다. 섬유질 분해효소계의 생합성에 있어서 최적의 유도기질이 endoglucanase의 경우엔 carboxymethylcellulose, ${\beta}-glucosidase$는 cellobiose, 그리고 endoxylanase와 ${\beta}-xylosidase$는 xylan으로 알려져 왔으나 이들 단일기질보다 기질들의 혼합물 특히 CMC-xylan과 CMC-xylan-laminarin of cellulase와 xylanase complexes의 생합성을 증가시키는데 매우 효과적인 것으로 나타났다. 이것은 각각의 유도기질에 따른 endoglucanase와 ${\beta}-glucosidase$ 그리고 endoxylanase의 components 양상 및 비교 활성도 변화에 기인하는 것으로 polyacrylamide gel 전기영동과 활성염색의 결과에서도 나타났다. 섬유소 분해효소계 생합성을 위한 유도물질의 이와 같은 공조효과는 Aspergillus nidulans에서 Cellulose와 xylanase systems의 생합성 조절이 유도물질에 의한 효소의 유도 수준에서 상호 관련되고 있음을 시사한다.

  • PDF

버섯 재배용 배지 재료로 수입한 농업부산물에서 중금속, 잔류농약, 영양성분 조사 (Investigation of Heavy Metals, Residual Pesticides and Nutrient Component from Agricultural By-products Imported as Medium Substrates for Mushroom Cultivation)

  • 김준영;이근식;이찬중;김성환
    • 한국환경농학회지
    • /
    • 제36권3호
    • /
    • pp.217-221
    • /
    • 2017
  • BACKGROUND: For the food safety of cultivated mushroom, information on the safety of agricultural by-products imported as medium substrates for mushroom cultivation is urgently needed. Therefore, this study was performed to detect the presence of heavy metals, residual pesticides, and nutrient component in the imported medium substrates. METHODS AND RESULTS: Six kinds of medium substrates imported from nine countries from 2015 to 2017 were investigated. A mercury analyzer MA-2000 and an inductively coupled plasma spectrometer OPTIMA 7000DV were used to analyze mercury, lead, arsenic, copper, nickel and cadmium. All of these heavy metals were detected at lower level than heavy metal tolerance standard level of by-product fertilizer in Korea. When 246 kinds of residual pesticides were examined by GC and HPLC, imidacloprid, thiamethoxam and carbendazim were detected from Egyptian beet pulp, Indian cottonseed meal and cottonseed hull, respectively. The content of nutrient components (water, crude ash, crude fat, crude protein and crude fiber) varied among imported countries and the medium substrates. CONCLUSION:The presence of heavy metals and residual pesticides in imported medium substrates for mushroom cultivation was confirmed. For the safe production of mushroom, this study shows that imported medium materials for mushroom cultivation need to be managed through continuous monitoring.

낙동강 본류에 출현하는 담수 태형동물 Pectinatella magnifica (Leidy 1851)의 서식환경 연구 (Freshwater Habitats of Pectinatella magnifica (Leidy 1851) Living in South Korea)

  • 정현기;이경락;최병기;권헌각;박혜경;정강영;유재정
    • 환경생물
    • /
    • 제33권3호
    • /
    • pp.352-359
    • /
    • 2015
  • 본 연구는 낙동강 본류에 서식하는 Pectinatella magnifica의 출현양상을 조사하기 위해 발생시기인 2014년 7월~11월 동안 기본 분포조사와 출현밀도가 높은 지역을 대상으로 집중조사를 실시하였다. 그 결과, 낙동강 본류 구간 내 Pectinatella magnifica의 부착기질은 인공적으로 형성된 기질에서 12.3%, 자연기질에서 87.7%로써 자연기질에서 매우 높게 확인되었으나 자연기질에 포함된 식물군락의 특정 종에 따른 선호하는 정도는 유의한 차이를 보이지 않았다. 반면 본 조사 결과에서는 고착대상으로 하는 기질의 분포 정도의 차이는 P. magnifica의 분포 차이에 영향을 미치고 있음을 보여주었다. 그러므로 태형동물이 선호하는 출현기질의 증가는 P. magnifica의 성장 및 분포에 영향을 미치는 요인 중 하나로써 작용될 것으로 사료된다.

Plant Terpenes and lignin as Natural Cosubstrates in Biodegradation of Polyclorinated Biphyls (PCBs) and Polucyclic Aromatic Hydrocarbons (PAHs)

  • Koh, Sung-Cheol;Park, Young-In;Koo, Yoon-Mo;So, Jae-Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권3호
    • /
    • pp.164-168
    • /
    • 2000
  • The obhective of this minireview is to examine how cometabolic biodegradation of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) might be af fected by plant terpenes and lignins as natural substral substrates abundant in mature. The topics covered, hence are environmental sinficance of PCBs and PAHs, nature and disribution of plant terpences and lignin, structural and metabolic similarities of the natural compounds to PCBs and PAHs, and possible roles of the natural substrates in inducing the biodegradative patathways of PCBs and PAHs

  • PDF

Synergic Effects among Endo-xylanase, $\beta$-Xylosidase, and $\alpha$-L-Arabinofuranosidase from Bacillus stearothermophilus

  • Suh, Jung Han;Ssang Goo Cho;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권3호
    • /
    • pp.179-183
    • /
    • 1996
  • Synergism among endo-xylanase, $\beta$-xylosidase, and $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus upon xylan hydrolysis was investigated by using birchwood, oat spelt, and arabinoxylan as substrates. Endo-xylanase and $\beta$-xylosidase showed the cooperative action on all three substrates tested, revealing the fact that $\beta$-xylosidase assists endo-xylanase action in xylan hydrolysis by relieving the endproduct inhibition upon endo-xylanase conferred by xylooligomers. $\alpha$-L-Arabinofuranosidase also exhibited synergic effects with endo-xylanase and $\beta$-xylosidase on oat spelt and arabinoxylan, which contained significant amounts of arabinose side chains, whereas no synergism was detected on birchwood xylan which had only trace amounts of the side chain. Thus, the hydrolysis of xylan containing arabinose side chains required $\alpha$-L-arabinofuranosidase as well as endo-xylanase and $\beta$-xylosidase for the better hydrolysis of the substrates, and these enzymes work cooperatively in order to maximize the extent and rate of xylan hydrolysis.

  • PDF

Utilization of Saline Solutions in the Modification of Lignocellulose from Champaca Wood

  • Sangian, Hanny F.;Sehe, Muhammad Rifai;Tamuntuan, Gerald H.;Zulnazri, Zulnazri
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권4호
    • /
    • pp.368-379
    • /
    • 2018
  • Objective of this work is to study the effects of a saline solution used to pretreat lignocellulosic material derived from champak timber. The native lignocellulosic solids, in powder form, were mixed with saline water solutions of three different concentrations and maintained for 2 weeks without stirring. The treated solids were washed, recovered, and then dried under sunlight. The substrates were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The crystallinity (CrI), lateral order index (LOI), total crystallinity index (TCI), and surface morphologies of all the samples were determined. The treated biomass structures were compared with controls. The data show that the structures of all the treated substrates changed, as indicated by CrI. CrI of the treated substrates decreased significantly compared with that of the original wood, as did LOI and TCI quantities, whereas the HBI parameter increased. The results indicate that the saline water pretreatment modified the wood samples.

Evaluating the Regulation of P-glycoprotein by Phytochemicals Using Caco-2 Cell Permeability Assay System

  • Choi, Ran Joo;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2014
  • P-glycoprotein (P-gp) is a permeability glycoprotein also known as multidrug resistance protein 1 (MDR1). P-gp is an ATP-binding cassette (ABC) transporter that pumps various types of drugs out of cells. These transporters reduce the intracellular concentrations of drugs and disturb drug absorption. The Caco-2 cell permeability assay system is an effective in vitro system that predicts the intestinal absorption of drugs and the functions of enzymes and transporters. Rhodamine-123 (R-123) and digoxin are well-known P-gp substrates that have been used to determine the function of P-gp. Efflux of P-gp substrates by P-gp has been routinely evaluated. To date, a number of herbal medicines have been tested with Caco-2 cell permeability assay system to assess bioavailability. There are growing efforts to find phytochemicals that potentially regulate P-gp function. The Caco-2 cell permeability assay system is a primary strategy to search for candidates of P-gp inhibitors. In this mini review, we have summarized the P-gp modulation by herbal extracts, decoctions or single components from natural products using Caco-2 cell permeability assays. Many natural products are known to regulate P-gp and herbal medicines could be used in combination with conventional drugs to enhance bioavailability.

Molecular Cloning and Characterization of CM Case gene (celC) from Salmonella typhimurium UR

  • Yoo, Ju-Soon;Jung, Youn-Ju;Chung, Soo-Yeol;Lee, Young-Choon;Choi, Yong-Lark
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.205-210
    • /
    • 2004
  • The sequence coding for carboxymethylcellulase (CMCase, CelC) was isolated from the DNA of Salmonella typhimurium URl. Comparison between the deduced amino acid sequence of CelC (368 amino acid residues, Molecular mass 41 kDa) and that of the previously published CMCase revealed that this enzyme belongs to the cellulase family 8 and D. The protein was overproduced in Escherichia coli using T7 expression system, and its activity was confirmed by CMC-SDS-PAGE. When the overexpressed CelC protein was tested on cellulose-type substrates, the recombinant protein is able to degrade cellulose-type substrates, such as CM-cellulose, xylan, avicel, lichenan, and laminarin. Optimal temperature and pH for enzyme activity were found to be 50$^{\circ}C$ and pH 6.5, respectively.