• Title/Summary/Keyword: natural resonance

Search Result 753, Processing Time 0.025 seconds

Resonance Condition of the Resonance Cavity and Air Gap in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 명동과 간극의 공명조건)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 2011
  • Korean bell is hung with some air gap between the bell bottom and the ground. In addition, it has a peculiar acoustic element, so called resonance cavity below the bell. A proper design of the air gap and cavity size dramatically amplifies the bell sound by resonance effect. Bell interior cavity, air gap and resonance cavity consist of an acoustic cavity system. When the acoustic cavity frequency coincides with the natural frequency of the bell body, the frequency component is significantly amplified. On the Sacred Bell of the Great King Seongdeok, this study proposes a resonance condition of the cavity system considering air gap effect for the first time. With the exact dimension of the bell, boundary element analysis is performed using SYSNOISE. Finally, this study reveals how the temperature in season influences the resonance condition and proposes a concept of variable type resonance cavity. By using the variable type resonance cavity, the cavity size is controlled on site and exact resonance is available regardless of temperature difference in season.

An Experimental and Numerical Study on the Fracture Behavior of Air conditioner Impellers (에어컨 임펠러의 파손 거동에 관한 실험 및 수치적 연구)

  • Koh, Byung-Kab;Lee, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3533-3539
    • /
    • 2009
  • An air conditioner impeller has been used to suck the warm air and to blow the chilled air by the centrifugal force induced from the rotation of it. To check the possibility of the fracture due to resonance, both numerical and experimental approach was carried out. For the structural analysis, the commercial code ANSYS based on the Finite Element Method was employed. The possibility of the fracture is the resonance between the natural frequency of impeller and characteristic frequency due to the aerodynamic forces. Experiment was carried out to see the natural frequency and numerical analysis based on the Vortex Element Method is performed to get the characteristic frequency. Comparing the natural frequencies that are calculated as described, we believe that resonance occurs.

A Study on Resonance and Interference of a Cooling Fan Assembly by Using FEM (유한요소법을 이용한 냉각홴의 진동 및 간섭에 관한 연구)

  • Seo Jong-Hwi;Song Ha-Jong;Park Tae-Won;Kim Joo-Yong;Jung Il-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.903-909
    • /
    • 2004
  • A CFA(cooling fan assembly) is composed of a fan, motor and shroud, which is at the back of the automotive radiator. By forcing the wind to pass, the CFA controls the cooling performance of the radiator. The noise and vibration of the CFA may be primarily due to the resonance between the CFA and engine. The Interference among the fan, shroud and radiator by deformation is considered when the CFA is designed. In this paper, in order to analyze the structural vibration of the CFA for automobiles, a finite element model of the CFA is established by using a commercial FEM code. After the finite element modeling, the natural frequencies and the mode shapes are obtained from the FE analysis. The natural frequencies are obtained from the vibration test as well. Then, the results of the vibration test are compared with those of the FE analysis. The natural frequencies obtained by experiment have a great similarity to the results from FE model. We have confirmed the validity of the FE model and verify the structural safety for the resonance. The stress and displacements are obtained from FE analysis. We have confirmed the safety for the interference and failure.

Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe

  • Bashar Mahmood Ali;Mehmet AKKAS;Aybaba HANCERLIOGULLARI;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid-conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

A Study of Natural Frequency in Steel Wind Turbine Tower according to the RNA Model (강재 풍력 터빈 타워의 상부구조 모델링 방법에 따른 고유진동수 특성에 대한 고찰)

  • Lee, Yun-Woo;Choi, Jun-Ho;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.37-42
    • /
    • 2014
  • Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.

NMR Hydrogen Exchange Study of DNA Duplex Containing the Consensus Binding Site for Human MEIS1

  • Choi, Seo-Ree;Jin, Ho-seong;Seo, Yeo-Jin;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.117-122
    • /
    • 2020
  • Transcription factors are proteins that bind specific sites or elements in regulatory regions of DNA, known as promoters or enhancers, where they control the transcription or expression of target genes. MEIS1 protein is a DNA-binding domain present in human transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the wild-type containing the consensus DNA-binding site for the MEIS1 and those of the mutant DNA duplexes using NMR spectroscopy. The G2A-, A3G- and C4T-mutant DNA duplexes lead to clear changes in thermal stabilities of these four consensus base pairs. These unique dynamic features of the four base pairs in the consensus 5'-TGAC-3' sequence might play crucial roles in the effective DNA binding of the MEIS1 protein.

Design of a Variable Resonator for the Sacred Bell of the Great King Seongdeok (성덕대왕신종을 위한 가변형 명동의 설계)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.288-297
    • /
    • 2012
  • This study proposes a design model of the variable type resonator which corrects the temperature variance according to the season, in order to maximize the resonance effect in the Sacred bell of the Great King Seongdeok. In the bell, the 1st natural frequency (64 Hz) and the 2nd natural frequency (168 Hz) are the most important partial tones. Resonance conditions of the two components are determined for the internal acoustic cavity system, which consists of bell body cavity, gap and the resonator. Acoustic frequency response characteristics of the internal cavity are determined by the boundary element analysis using SYSNOISE. As an external factor, temperature variance according to the season largely influences the resonance condition and the length of the resonator should be controlled to maximize the resonance effect. As a measure, this study proposes a design model of the variable type resonator for the Sacred Bell of the Great King Seongdeok, which can control the length at the belfry according to the season.

Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor (농업용 트랙터 PTO 전동라인의 래틀 소음 분석)

  • Ahn, Da-Vin;Shin, In-Kyung;Han, Hyun-Woo;Son, Gwan-Hee;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.

Natural Frequency Analysis of the Tower-Cable System of a 6kW Wind Turbine (6kW 풍력발전기 타워-케이블계의 고유진동수 해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.3-8
    • /
    • 2009
  • Vibration characteristics of a 6kW stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed and compared with the analytical results. To predict the resonance speed of the cable supported W/T, Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension, cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF