• Title/Summary/Keyword: natural radionuclides

Search Result 86, Processing Time 0.02 seconds

Assessment of Radionuclides(Co, Sr) Adsorption and Desorption Characteristics in Soil Using Modified Clay and Fish Bones (개질 점토 및 생선뼈를 이용한 토양 내 방사성 핵종(Co, Sr) 흡착 및 탈착 특성 평가)

  • Kang Kyungchan
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.58-70
    • /
    • 2023
  • The improper management of radioactive waste or accidents caused by natural disasters can result in the release of radioactive materials into the surrounding environment, potentially leading to soil and groundwater contamination by radionuclides. In this study, adsorption-desorption behaviors of the radionuclides (cobalt and strontium) in natural soil, montmorillonite, Mn-PILC, Fe-PILC, and fishbone were investigated. Several models were used to predict adsorption isotherms of radionuclides on various absorbents. Adsorption isotherms of cobalt and strontium in several adsorbents were examined at pH 5.5. The amount of sorbed cobalt and strontium were represented fishbone > natural soil > Mn-PILC > Fe-PILC > montmorillonite and natural soil > Mn-PILC > fishbone > Fe-PILC > montmorillonite, respectively. Adsorption datas were fitted with several models such as Freundlich, Langmuir, Sips, Redlich-Peterson, Khan, and Generalized model. The results of curve fitting showed R2> 0.98 in all of adsorption models, except Sr2+ adsorption onto montmorillonite. For modified clays (Mn-PILC, Fe-PILC), it is suggested that, unlike natural soils and fish bones, there are not only single adsorption mechanisms but also adsorption mechanisms based on chemical adsorption and surface charge. In the case of fish bones, due to the relatively higher adsorption capacity than modified clays and its characteristic of significant desorption, it is expected more suitable for the removal of radionuclides in aquatic environments than for the immobilization of radionuclides in soil.

Adsorption Characteristics of Cobalt, Strontium, and Cesium on Natural Soil and Kaolin (자연토양 및 카올린에 대한 코발트, 스트론튬, 세슘의 흡착 특성)

  • Cheon, Kyeong Ho;Choi, Jeong-Hak;Shin, Won Sik;Choi, Sang June
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1609-1618
    • /
    • 2014
  • In this study, as a fundamental study for the remediation of the radionuclides-contaminated soil, the adsorption of cobalt, strontium, and cesium on natural soil and kaolin were experimently investigated and adsorption characteristics were evaluated by using several adsorption kinetic and isotherm models. The pseudo-first-order kinetic model (PFOM), pseudo-second-order kinetic model (PSOM), one-site mass transfer model (OSMTM), and two compartment first-order kinetic model (TCFOKM) were used to evaluate the kinetic data and the pseudo-second-order kinetic model was the best with good correlation. The adsorption equilibria of cobalt, strontium, and cesium on natural soil were fitted successfully by Redlich-Peterson and Sips models. For kaolin, the adsorption equilibria of cobalt, strontium, and cesium were fitted well by Redlich-Peterson, Freundlich, and Sips models, respectively. The amount of adsorbed radionuclides on natural soil and kaolin was in the order of cesium > strontium > cobalt. It is considered that these results could be useful to predicting the adsorption behaviors of radionuclides such as cobalt, strontium, and cesium in soil environments.

Radioactivity concentrations of natural radionuclides in fine dust of Jeju, Korea

  • Chung-Hun Han;Sohyeon Lim;Hee-Jung Im
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.191-197
    • /
    • 2023
  • Radioactivity concentrations for natural radionuclides were determined from fine dust samples collected in Jeju, Korea according to atmospheric events (Asian dust, haze, fog-mist, and non-event), and radium equivalent activity was calculated. The mean atmospheric radioactivity concentrations for 238U, 232Th, and 40K in 127 fine dust samples were 0.49, 0.24, and 7.23 µBq m-3, respectively, and the radium equivalent activity was 33.25 Bq kg-1. The mean concentrations of 238U and 232Th in the fine dust during the Asian dust period were 1.31 and 1.60 µBq m-3, respectively, above the global average, while the values for the other three atmospheric events were lower. The ratio of 232Th/238U radioactivity during the Asian dust period was 1.22, higher than the ratio for the other three atmospheric events.

Analysis of Sorption and Desorption Behaviors of Radionuclides (Cobalt and Strontium) in Natural Soil (자연 토양에서의 방사성 핵종(Co, Sr)의 흡/탈착 거동 특성 평가)

  • Cheon Kyeong-Ho;Shin Won Sik;Choi Jeong-Hak;Choi Sang June
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.485-495
    • /
    • 2005
  • This study was conducted to investigate sorption and desorption behaviors of radionuclides (Cobalt and Strontium) in natural soil. Sorption kinetics and isotherms were analyzed to predict sorption behaviors of radionuclides in natural soil and the experimental data were fitted to several sorption models. Desorption experiments were also performed with or without CMCD at constant pH and ion strength conditions. The results showed that $Sr^{2+}$ was more strongly sorbed than $Co^{2+}$ in natural soil. Both $Co^{2+}$ and $Sr^{2+}$ followed a pseudo-second order kinetics and Sips model. The desorption-resistance of $Co^{2+}$ and $Sr^{2+}$ was estimated using a natural surfactant Carboxymethyl-${\beta}$-cyclodextrin(CMCD) or non-desorbing fraction. Desorption of radionuclides was partially irreversible and $Sr^{2+}$ was more resistant than $Co^{2+}$ Addition of CMCD facilitated desorption of $Co^{2+}$ and $Sr^{2+}$ from soil.

  • PDF

An analysis of the concentration of radioactivity of natural radionuclides (238U, 232Th, 40K) and gamma-ray emitting artificial radionuclides(137Cs, 60Co) present in the drinking water of the city of Busan, Republic of Korea, and the calculated absorbed dose of the residents

  • Kim, Chang-Soo;Kim, Jung-Hoon
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2012
  • This study was designed to detect and measure the concentration of radioactivity of natural radionuclides ($^{238}U$, $^{232}Th$, $^{40}K$) and artificial radionuclides ($^{137}Cs$, $^{60}Co$) present in the drinking water of the city of Busan and surrounding areas in South Korea, and also to measure the absorbed dose of radiation caused by these elements in the residents so as to help better manage the risk that these radionuclides pose in the future. For the purposes of the study, a total of 42 samples of water were collected from three key water sources (19 samples of groundwater, 4 samples of tap water, and 19 samples of surface water) and their contents were analyzed for radioactivity concentration. The results revealed that two natural radionuclides, $^{238}U$ and $^{232}Th$, exist in the groundwater with an average concentration of radioactivity of 3.34 Bq/L and $8.28{\times}10^{-5}Bq/L$ respectively, while the surface water was found to contain the same two radionuclides with mean concentrations of 0.849 Bq/L and $1.103{\times}10^{-4}Bq/L$ respectively. In addition, of the 19 samples of the groundwater, $^{137}Cs$ was found in eight of them and $^{60}Co$ was detected in ten. Of the four samples of the tap water, $^{137}Cs$ was detected in all samples and $^{60}Co$ was detected in three. Both $^{137}Cs$ and $^{60}Co$ were detected in all 12 samples of surface water. As far as $^{40}K$ is concerned, this element was detected in three of the 19 groundwater samples, but was not detected in any surface or tap water sample. In addition, the absorbed dose of $^{238}U$ from the groundwater was $7.94{\times}10^{-8}Sv/y$, while the absorbed dose of $^{232}Th$ from the surface water was $9.33{\times}10^{-13}Sv/y$. The absorbed dose of $^{137}Cs$ from the tap water was $7.33{\times}10^{-5}Sv/y$, while the absorbed dose of $^{60}Co$ from the surface water was the highest at $4.23{\times}10^{-6}Sv/y$.

Comparison of proliferation resistance among natural uranium, thorium-uranium, and thorium-plutonium fuels used in CANada Deuterium Uranium in deep geological repository by combining multiattribute utility analysis with transport model

  • Nagasaki, Shinya;Wang, Xiaopan;Buijs, Adriaan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.794-800
    • /
    • 2018
  • The proliferation resistance (PR) of Th/U and Th/Pu fuels used in CANada Deuterium Uranium for the deep geological repository was assessed by combining the multiattribute utility analysis proposed by Chirayath et al., 2015 with the transport model of radionuclides in the repository and comparing with that of the used natural U fuel case. It was found that there was no significant advantage for Th/U and Th/Pu fuels from the viewpoint of the PR in the repository. It was also found that the PR values for used nuclear fuels in the repository of Th/U, Th/Pu, and natural U was comparable with those for enrichment and reprocessing facilities in the pressurized water reactor (PWR) nuclear fuel cycle. On the other hand, the PR values considering the transport of radionuclides in the repository were found to be slightly smaller than those without their transport after the used nuclear fuels started dissolving after 1,000 years.

Assessment of radioactivity levels and radiation hazards in building materials in Egypt

  • Ahmed E. Abdel Gawad;Mohamed Y. Hanfi;Mostafa N. Tawfik;Mohammed S. Alqahtani;Hamed I. Mira
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.707-714
    • /
    • 2024
  • Different degrees of natural radioactivity found in quartz can have negative consequences on health. Quartz vein along the investigated Abu Ramad area, Egypt, had its natural radioactivity assessed. The HPGe spectrometer was used to determine the role played by the radionuclides 238U, 232Th, and 40K in the gamma radiation that was emitted, and the results showed that these concentrations are 484.64 ± 288.4, 36.8 ± 13.1 and 772.2 ± 134.6 Bq kg-1 were higher than the corresponding reported global limits of 33, 45, and 412 Bq kg-1 for each radionuclide (238U, 232Th, and 40K). Among the radiological hazard parameters, the excess lifetime cancer risk (ELCR) is estimated and it's mean value of ELCR (1.2) is higher than the permissible limit of 0.00029. The relationship between the radionuclides and the associated radiological hazard characteristics was investigated based on multivariate statistical methods including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA). According to statistical research, the radioactive risk of quartz is primarily caused by the 238U, 232Thand 40K. Finally, applying quartz to building materials would pose a significant risk to the public.

Radiotoxicity flux and concentration as complementary safety indicators for the safety assessment of a rock-cavern type LILW repository

  • Jo, Yongheum;Han, Sol-Chan;Ok, Soon-Il;Choi, Seonggyu;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1324-1329
    • /
    • 2018
  • This study presents a practical application of complementary safety indicators, which can be applied in a safety assessment of a radioactive waste repository by excluding a biosphere simulation and comparing the artificial radiation originating from the repository with the background natural radiation. Complementary safety indicators (radiotoxicity flux from geosphere and radiotoxicity concentration in seawater) were applied in the safety assessment of a rock-cavern type low and intermediate level radioactive waste (LILW) repository in the Republic of Korea. The natural radionuclide ($^{40}K$, $^{226,228}Ra$, $^{232}Th$, and $^{234,235,238}U$) concentrations in the groundwater and seawater at the Gyeongju LILW repository site were measured. Based on the analyzed concentrations of natural radionuclides, the levels of natural radiation were determined to be $8.6{\times}10^{-5}$ - $8.0{\times}10^{-4}Sv/m^2/yr$ and $6.95{\times}10^{-5}Sv/m^3$ for radiotoxicity flux from the geosphere and radiotoxicity concentration in seawater, respectively. From simulation results obtained using a Goldsim-based safety assessment model, it was determined that the radiotoxicity of radionuclides released from the repository is lower than that of the natural radionuclides inherently present in the natural waters. The applicability of the complementary safety indicators to the safety case was discussed with regard to reduction of the uncertainty associated with biosphere simulations, and communication with the public.

Hydrogeochemical Characterization of Natural Radionuclides Uranium and Radon in Groundwater, Jeonnam Province (전라남도 일대 지하수 중에서 산출하는 자연방사성물질 우라늄과 라돈의 수리지구화학적 거동특징)

  • Cho, Byong Wook;Kim, Moon Su;Kim, Hyun Gu;Hwang, Jae Hong;Cho, Soo Young;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.501-511
    • /
    • 2017
  • Natural radionuclides such as uranium and radon from 170 groundwater wells in Jeonnam Province were investigated, together with hydrogeochemical properties, and concentration maps of uranium and radon were also constructed in this study. Characteristics of their concentrations and occurrence were discussed using hydrogeochemical factors and geostatistical methods based on individual geological units. Though uranium and radon in groundwater show a wide range in the concentration, most of which occur as low levels except a few sites. Based on factor analysis, correlation coefficients between uranium and radon are very low. Such results verify that these radionuclides behave independently, well consistent with most previous results investigated nationwide in groundwater. Besides uranium and radon, most hydrochemical components in groundwater show a close relation to indicate the water-rock interaction taken place actively in aquifer.