• Title/Summary/Keyword: natural plant powder

Search Result 44, Processing Time 0.024 seconds

Analysis on the Components and Safety Evaluation of Abeliophyllum distichum Nakai Leaves and Stems (미선나무 잎과 줄기의 성분 분석 및 안전성 평가)

  • Kwon, Soonbok;Kang, Heejoo;Kim, Minjung;Kim, Jinhee;Shin, Haeshik;Kim, Kangsung
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.3
    • /
    • pp.234-244
    • /
    • 2014
  • Objectives: This study was carried out in order to analyze the composition of the leaves and stems of Abeliophyllum distichum Nakai, with the aim of obtaining basic data for utilizing the plant as a food ingredient, as well as for processing. Methods: Leaves and stems from Abeliophyllum distichum Nakai were harvested at Cheongcheon-myeon, Geosan-gun, Chungcheongbuk-do, and were subsequently freeze-dried and ground to a fine powder for chemical component analysis and safety evaluation. Results: The moisture contents of Abeliophyllum distichum Nakai leaves and stems were respectively 65.07% and 40.97%, and the crude ash contents were 1.32% and 0.91%. In addition, the crude protein contents were 11.97% and 3.77%, and the crude fat contents were 2.52% and 0.36%, respectively. The fructose and glucose contents were 32.13 mg/g and 56.17 mg/g for leaves, and 11.38 mg/g and 10.59 mg/g for stems. The major fatty acids of the leaves were palmitic acid (31.79%) and stearic acid (14.79%), and those for stems were linolenic acid (32.78%) and palmitic acid (26.75%). The ascorbic acid contents of leaves and stems were 1.32 mg/g and 0.30 mg/g respectively. The calcium content was found to be the highest among the minerals tested, both in the leaves and stems, with the levels being 166.17 mg/100 g for leaves and 592.34 mg/100 g for stems. The content of organic acid was greater in leaves than in stems, with that of malic acid accounting for more than 75% of total organic acids for both samples. The total phenolic compounds and flavonoid contents of Abeliophyllum distichum Nakai were 50.64 mg/g and 13.53 mg/g in leaves and 96.47 mg/g and 18.53 mg/g in stems, respectively. No changes were shown in the number of micronucleated polychromatic erythrocytes (MNPCE) among 2,000 polychromatic erythrocytes compared to the negative control. Abeliophyllum distichum Nakai was administered orally to rats in order to investigate acute toxicity. The $LD_{50}$ values in rats were above 2,000 mg/kg. Conclusion: These results indicate that the leaves and stems of Abeliophyllum distichum Nakai can be used as natural ingredients in the development of nutritional and functional materials.

Preparation and Antioxidant Activity of Health Drink with Extract Powders from Safflower (Carthamus tinctorius L.) Seed (홍화씨 추출분말 함유 건강음료의 제조와 항산화성)

  • Kim, Jun-Han;Park, Jun-Hong;Park, So-Deuk;Choi, Seoing-Yong;Seong, Jong-Hwan;Moon, Kwang-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.617-624
    • /
    • 2002
  • Health drinks were prepared with freeze dried powder of 60% ethanol extract (60% EFDP), 60% ethanol extract after hydrolysis with amyloglucosidase (60% AEFDP) and 80% ethanol extract (80% EFDP) from roasted safflower seed. Quality characteristics and antioxidative properties were investigated. Yield of freeze dried powders were ranged in $4.67%{\sim}5.62%$. Brix, pH and titratable acidity of safflower drinks were ranged in $11.4{\sim}14.2%$, $2.83{\sim}3.34$ and $0.09{\sim}0.91%$, respectively. Content of total phenolic compounds was much more in 80% EFDP (117 mg/g) and safflower drink-I (SD-I, 440 ppm) than others. Content of total flavonoid was observed in higher level in 60% EFDP (49 mg/g) and safflower drink-V (SD-V, 138 ppm) than others. Antioxidant compounds such as N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]ferulamide(serotonin-I) and N-[2-(5-hydroxy-1H-indol-3yl)ethyl]-p-coumaramide(serotonin-II) exhibited higher contents of 21.09 ppm, 33.56 ppm in 60% EFDP and of 3.83 ppm, 5.81 ppm in safflower drink-II (SD-II) than others. Content of acacetin was much more in 80% EFDP (13.53 ppm) and safflower drink-IV (SD-IV, 1.14 ppm) than others. From the DPPH test to measure antioxidant activity, it was shown that 80% EFDP and SD-I have stronger scavenging activities of 94.58% and 94.88%, respectively, while BHA standard solution does 93.88%. Among drinks, SD-II was revealed to have highest level on overall acceptance, color and flavor through sensory evaluation. These results induced that safflower seed can be used as natural antioxidant and functional food material.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Increased Anti-oxidative Activity and Whitening Effects of a Saposhnikovia Extract Following Bioconversion Fermentation using Lactobacillus plantarum BHN-LAB 33 (Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1208-1217
    • /
    • 2019
  • Saposhnikovia has been used as a traditional medicinal herb in Asia because of the reported anti-inflammatory, anti-allergic rhinitis, pro-whitening, anti-atopy, anti-allergy, and anti-dermatopathy effects of the phytochemical compounds it contains. In this study, we investigated the antioxidant effects of a Saposhnikovia extract after fermentation by Lactobacillus plantarum BHN-LAB 33. Saposhnikovia powder was inoculated with L. plantarum BHN-LAB 33 and fermented at $37^{\circ}C$ for 72 hr. After fermentation, the total polyphenol content of the Saposhnikovia extract increased by about 14%, and the total flavonoid content increased by about 9%. The superoxide dismutase-like activities, DPPH radical scavenging, ABTS radical scavenging, reducing power activity, and tyrosinase inhibition activity also increased after fermentation by approximately 70%, 80%, 45%, 39%, and 44%, respectively. The results confirmed that fermentation of a Saposhnikovia extract by L. plantarum BHN-LAB 33 is an effective way to increase the antioxidant effects of the extract. The bioconversion process investigated in this study may have the potential to produce phytochemical-enriched natural antioxidant agents with high added value from Saposhnikovia matrices. These results can also be applied to the development of improved foods and cosmetic materials.