• Title/Summary/Keyword: natural organic lime

Search Result 14, Processing Time 0.026 seconds

Suggesting Optimum Mix Proportion of Hardener for Soil-pavement Concrete Incorporating Natural Organic Lime and Magnesia-lime (천연유기석회 및 고토석회를 조합한 흙 포장 콘크리트용 경화재의 최적배합안 도출)

  • Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Lots of soil-pavement concrete placed showed a number of problems such as decreasing strength, and durability. In this research, to provide a solution of the problem reported the wasting materials of natural organic lime and magnesia lime were used as a hardener to achieve sufficient performance of soil-pavement concrete. Namely, as a stimulus of blast furnace slag, the natural organic lime and magnesia lime were tested within the mix proportion of 0 to 10 % for each lime to make a new hardener. As a result, in the case of mortar with 1 to 3 % of cement to fine aggregate, 30 % replaced blast furnace slag showed the more favorable results with 5 to 5 % of mix proportion for natural organic lime and magnesia lime.

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

Effect of Lime Stabilized Slaughterhouse Waste on Growth of Chinese Cabbage and Soil pH (산화칼슘을 처리한 도축폐기물이 배추의 생육 및 토양산도에 미치는 영향)

  • Back, Jun-Ho;Lee, Seung-Ho;Shin, Hyun-Jin;Song, Yu-Chun;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.80-85
    • /
    • 2003
  • This study was conducted to find out the effect of a lime stabilized slaughterhouse waste(LSW) on the growth of chinese cabbage and soil pH. Two levels of the lime stabilized slaughterhouse waste treatment, 169 and $338kg\;10a^{-1}$, with N-P-K fertilization were tested, and treatments of N-P-K and N-P-K with slaked lime were included in the experiment as a control. Fresh weight of chinese cabbage at harvest was not significantly different among the treatments. However, in the LSW treatment of $169kg\;10a^{-1}$, fresh weight of chinese cabbage was 5% higher comparing to the N-P-K treatment. Contents of N, P, and K in chinese cabbage were higher in the LSW treatments in comparison to the control treatments. Competitive inhibition of Mg uptake by Ca in the treatments of LSW and lime was apparent. Soil pH was increased by the application of LSW, and the increase in the LSW treatment of $169kg\;10a^{-1}$ was nearly the same as the soil pH increase in the slaked lime treatment. The lime stabilized slaughterhouse waste can be considered as a potential soil amendment for amelioration of soil acidity and supply of organic matter as well.

The Effect of Lime Application after Cultivating Winter Forage Crops on the Change of Major Characters and Yield of Peanut (동계사료작물 재배후 석회물질 시용이 땅콩의 주요 형질 및 수량에 미치는 영향)

  • Kim, Dae-Hyang;Chim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.103-114
    • /
    • 1995
  • These experiments were conducted for decrease of injury by continuous cropping in the peanut fields of Chonbuk Wangkungarea. The continuous cropping field for four years was used in this experiment. Italian ryegrass and rye were cultivated andlime materials were distributed for improvement of soil fertility. The results were as follows; 1. Forage crops were cultivatedand lime materials were distributed on the continuous cropping field of peanut. The organic matter content of the expermentalplot cultivating Italian ryegrass was only 1.25%. The organic matter content of soil cultivated Italian ryegrass after distributedmagnesium lime was 1.37% and that of soil cultivated Italian ryegrass after distributed gypsum was 1.30%. It was highcontent comparing to that of soil distributed lime materials only. The organic matter content of soil cultivated rye after distributed gypsum was 1.77%. 2. The phosphate content of soil cutivated Italian ryegrass was 332ppm. The phosphate content ofsoil cultivated Italian ryegrass after distributed magnesium lime was 34Oppm and that of soil cultivated Italian ryegrass afterdistributed gypsum was 31 2ppm. The phosphate content of soil cultivated rye only was 386ppm. The phosphate content ofsoil cultivated rye after distributed gypsum was 41 8ppm. This phosphate content was lower than that of soil distributed limematerials only. 3. The phytotoxin content of soil cultivated Italian ryegrass after distributed magnesium lime was decreased to17.7% and that of soil cultivated Italian ryegrass after distributed gypsum was decreased to 25.3%. The phytotoxin content ofsoil cultivated rye after distributed magnesium lime was decreased to 12.0% and that of soil cultivated rye after distributedgypsum was decreased to 12.8% comparing to the phytotoxin content of soil distributed lime materials only. Italian ryegrasswas effective to decrease phytotoxin among the forage crops and gypsum was effective among the lime materials. 4. Abacterial wilt and a late spot of peanut which were known as, main reason of continuous cropping failure were surveyed.lnccidence of a bacterial wilt was 3.4% in the plot cultivated Italian ryegrass only and that was 2.9% in the plot cultivated ryeonly. lnccidence of a bacterial wilt was 2.5% in the plot cultivated Italian ryegrass after distributed magnesium lime and thatwas 2.3% in the plot cultivated rye after distributed gypsum. Inccidence plot cultivated forage crops was lower than that of plotdistributed lime materials. 5. Inccidence of a late spot was high in the plot cultivated forage crops ony, but it was low in the plotcultivated forage crops after distributed lime materials comparing to that of the control plot. 6. The growth and yield of peanutwere bad in the plot cultivated forage crops only comparing to the control plot distributed lime materials only. These resultswere same in the plot cultivated rye after distributed lime materials, but the growth and yield were grown up in the plotcultured Italian ryegrass after distributed lime materials.

  • PDF

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

Analysis on the Site Characteristics for the Restoration of Sangrim Woodlands in Hamyang-Gun, Korea (함양 상림 복원을 위한 입지특성 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to establish a management plan for the Sangrim Woodlands restoration by analyzing the site characteristics of the Sangrim Woodlands Natural Monument(Natural Monument 154) in Hamyang-Gun, Gyoungsangnam-Do, Korea. Site preparation to enhance soil aeration should be applied because soil bulk density in all study sites was higher than soil compaction of natural forest soil area. Herbaceous plants could be introduced to hard soil strength for restoration of areas compacted by visitors. Also, visitors around forest areas should be restricted to enhance natural soil restoration. Soil pH in the Sangrim Woodlands was between 4.18 and 4.90. The values were lower than pH 5.34 of Korean forest soil originated from metamorphic parent materials. Lime fertilizer could be applied to reduce soil acidification in the woodlands. Short and long-term management plans such as periodical fertilizations to improve plant growth should be established to restore the Sangrim Woodlands which have high soil compaction, low soil pH and organic matter content.

Characteristics of Fine Particles Measured in Two Different Functional Areas and Identification of Factors Enhancing Their Concentrations (강원도 춘천과 영월에서 측정한 미세먼지 농도 특성 및 고농도 원인 분석)

  • Cho, Sung-Hwan;Kim, Hyun-Woong;Han, Young-Ji;Kim, Woo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.100-113
    • /
    • 2016
  • In this study, the characteristics of $PM_{2.5}$ and $PM_{2.5-10}$ concentrations were identified in two different functional areas including Chuncheon and Youngwol, Korea. Even though the anthropogenic emission rates of $PM_{2.5}$ and $PM_{10}$ are approximately four times higher in Youngwol than in Chuncheon their atmospheric concentrations were statistically higher in Chuncheon. In Chuncheon, both $PM_{2.5}$ concentrations and the ratio of $PM_{2.5}/PM_{10}$ increased as relative humidity (RH) increased possibly because the inorganic and/or organic secondary aerosols were actively formed at high RH. This result was also supported by that $PM_{2.5}$ concentration was enhanced under the fog and mist conditions in Chuncheon. On the other hand, both $PM_{2.5}$ and $PM_{2.5-10}$ concentrations clearly increased with the southerly winds blown from the cement production facility in Youngwol. In addition, high $PM_{2.5-10}$ concentrations were observed with high wind speed, low relative humidity, and high $NO_2$ concentrations in Youngwol, suggesting that $PM_{2.5-10}$ was generated through the physical process including crushing and packing procedures followed by resuspension from cement and lime factory.

Restoration Plan and Ecological Characteristics of Vegetation in the Area Adjacent to GeumJeong Mountain Fortress (금정산성 주변 식생의 생태적 특성과 복원방안)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.231-245
    • /
    • 2010
  • The the purpose of this study was to analyze of the vegetation structure and phytosociological changes in the area adjacent to GeumJeong Mountain Fortress for fifteen years. The result of this study was as follows; Of the 8 quadrates, site of the North Gate 2 was having a highest in the number of extinct trees, 15 kinds. This is probably due to trampling effect caused by climbers' steps. Site of the West Gate 1 and South gate 1 each had 8 kinds of extinct trees, respectively. The number of newly appeared trees was highest at site of the North Gate 1, (8 kinds) followed by the sites of South gate 1 and South gate 2, respectively (5 kinds). The highest decrease in number of tree species was observed in North Gate 1, therefore, there is a strong relationship between vegetation diversity and the number of users of the available spaces. In order to revitalize the unstable vegetation structure of the Area Adjacent to GeumJeong Mountain Fortress, Robinia pseudo-acacia has to be well maintained in the shrub tree layer, and vines, such as Smilax china, Humulus japonicus, and Pueraria thungergiana, should be removed. To recover natural vegetation, dead leaf layer should be protected, and more shrub trees need to be planted. In the understory and shrub tree layer, multi layer tree planting is highly recommended to recover natural vegetation and increase tree diversity. In order to improve bad soil condition caused by trampling effect of recreational users, special treatments to the soil structure are required, such as mulching and raking soil. Also, depending on its soil damage from users trampling, the areas in the park should be divided into usable areas and user limited areas by the sabbatical year system. To improve the soil acidity due to acidic rain, soil buffering ability should be improved by activating microorganisms in the soil by using lime and organic material.

Production of Environment-friendly Artificial Media for Agriculture Using Urban Sludge (도시발생 슬러지를 이용한 환경친화적 인공배지 생산)

  • 김선주;윤춘경;양용석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.102-111
    • /
    • 1998
  • Large amount of sludge have been generating in the process of water and wastewater treatment in urban area, and it has been making many environmental problems. Currently almost of sludge is landfilled, and since sludge is difficult to handle and dehydrate, the permeated water from the filled-in ground contaminate the surrounding soil and groundwater which may cause serious environmental and sociological problems. The organic component in sludge can be almost removed through the heat treatment process, and the final product is called artificial soil or artificial media according to the temperature control. To produce artificial media using sludge, chabazite and lime were used as an additive, and the mixture of sludge & additives was thermally treated in the firing kiln at about 800~1, 100。C for about fifteen minutes. The physical and chemical characteristics of the produced artificial media were analyzed, and it showed that it can be used as an artificial media for plant production or soil conditioner for farmland. The concentrations of the toxic heavy metals in the artificial media were lower than the soil quality standard for farmland. The characteristics of produced artificial media, using the mixture of sludge and additives through the heat treatment, is similar to the natural chabazite and soil. The analyzed result of the mineral composition of artificial media showed that it has a characteristics similar to natural stable soil, so the produced artificial media may be applied to farmland or water culture without causing adverse effect. Therefore this study showed that the above process can be a feasible alternative for sludge treatment.

  • PDF

Study on the Improvement of Land Clearing Methods by Bulldozer & Fertilization of Cleared Soil (불도우저에 의한 개간 공법의 개선과 숙지화에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3627-3641
    • /
    • 1975
  • The Government is trying to increase total food grain yield to meet national self sufficiency by means of increasing unit yield as well as extending crop land, and this year he set the target of 321,000 hectare of forest to clear for cropping. This study was carried to investigate the most efficient method of clearing hillock by bulldozer, and successful method to develope yielding potential of newly cleared land in short term. Since the conventional land clearing method is just earth leveling and root removing neglecting top soil treatment, the growth of crop was poor and farmer tends not to care the land. The top-soil-furrowing method is applied through out this study, that is advantageous especially for the land having shallow top soil and low fertility like Korean forest. In this study, various operating method were tried to find out most efficient method separately in connection with the land slope less than 25 percent and over, and several fertilizing methods to develop yielding potential. The results are as follows; 1) For the natural land slope utilization method, applicable to the land having less than 25 percent slope, reverse operating was more efficient than using forward gear of bulldozer. The operating time was 3 hour 32 minutes and 36 seconds using forward gear was 2 hour 32 minutes and 30 seconds for reverse gear operation per 1,000 square meter. 2) Bulldozer having angle blade adjustment needed 7hr 15min. for constructing of terrace per 10a compaire with the one having angle & tilt adjustment needed 6hr 4min for same operations. Specially there is significant difference for operation time of first period (earth cutting) such as bulldozer having angle blade adjustment needed 3hr 56min compaired with the one having angle & tilt adjustment 3hr 59min. In construction of terrace, the bull-dozer having tilting and angle blade adjustment was most suitable and performed efficiently. 3) For the fertilizer application treatment, the grass (Ladino clover) yield in first year was almost same as ordinary field's in the plot applied(N.P.K+lime+manure) while none fertilizer plot showed one tenth of it, and (N.P.K.+lime) applied plot yielded on third. 4) The effect of different land clearing method to yield showed significant difference between each treatment especially in the first year, and the conventional method was the lowest. In the second year, still conventional terracing plot yielded only half of ordinary field while the other plots showed as same as ordinary field's. 5) The downward top soil treatment plot showed most rapid improvement in soil structure during one year physio chemically, it showed increase in pH rate and organic composition, and the soil changed gradually from loam to sand-loam and the moisture content increased against the pF rate, and it gives good condition to grow hay due to the increase of field water capacity with higher available water content. 6) Since the soil of tested area was granite, the rate of soil errosion was increased about 2 to 5 percent influencing in soil structure more sand reducing clay content, and an optimum contour farming method should be prepared as a counter measure of errosion.

  • PDF