• Title/Summary/Keyword: natural mortality

Search Result 378, Processing Time 0.033 seconds

Ecotoxicological Evaluation of Sewage Sludge Using Bioluminescent Marine Bacteria and Rotifer

  • Park, Gyung-Soo;Chung, Chang-Soo;Lee, Sang-Hee;Hong, Gi-Hoon;Kirn, Suk-Hyun;Park, Soung-Yun;Yoon, Seong-Jin;Lee!, Seung-Min
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2005
  • Bioassay using the marine bacteria, Vibrio fischeri and rotifer, Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox(R) bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox(R) results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.

Pathogenicity of Entomopathogenic Nematode, Steinernema carpocapsae against Fall Webworm, Hyphanria cunea (Lepidoptera: Arctiidae) (미국흰불나방(Hyphanria cunea)에 대한 곤충병원성선충 Steinernema carpocapsae의 병원성)

  • Park Hyung Soon;Kim Hyeong Hwan;Chung Hun Gwan;Cho Yoon Sin;Jeon Heung Yong;Jang Han Ik;Kim Dong Soo;Choo Ho Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.4
    • /
    • pp.193-200
    • /
    • 2004
  • Environmentally sound control of fall webworm, Hyphanria cunea (Drury) with entomopathogenic nematode, Sreinernema carpocapsae Pocheon strain was evaluated in the laboratory and pot. Pathogenicity of 5. carpocapsae Pocheon strain was different depending on larval stage, i.e., mortality of the 2nd instar and the $3\~4th$ instar was $100\%$ with >20 infective juveniles (Ijs)/larva in 3 days, but the 5th instar was $34\%$ with (Ijs)/larva in 3 days. Pathogenicity of 5. carpocapsae Pocheon strain was higher with increasing nematode concentration. Mortality of Hyphanria cunea larva by 5. carpocapsae Pocheon strain was not significantly different (more than $70\%$) between nematode concentration on treated trees (Malus alba and Platanus orientalis) and in pot.

Development of a Redox Dye-Based Rapid Colorimetric Assay for the Quantitation of Viability/Mortality of Pine Wilt Nematode

  • Han, Kyeongmin;Lee, Jaejoon;Shanmugam, Gnanendra;Lee, Sun Keun;Jeon, Junhyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1117-1123
    • /
    • 2019
  • Control of pine wilt disease, which is caused by pine wilt nematode Bursaphelenchus xylophilus, is heavily dependent on the use of chemicals such as abamectin. Although such chemicals are highly effective, demands for alternatives that are derived preferentially from natural sources, are increasing out of environmental concerns. One of the challenges to discovery of alternative control agents is lack of fast and efficient screening method that can be used in a high-throughput manner. Here we described the development of colorimetric assay for the rapid and accurate screening of candidate nematicidal compounds/biologics targeting B. xylophilus. Contrary to the conventional method, which relies on laborious visual inspection and counting of nematode population under microscope, our method utilizes a redox dye that changes its color in response to metabolic activity of nematode population in a given sample. In this work, we optimized parameters of our colorimetric assay including number of nematodes and amount of redox dye, and tested applicability of our assay for screening of chemicals and biologics. We demonstrated that our colorimetric assay can be applied to rapid and accurate quantification of nematode viability/mortality in a nematode population treated with candidate chemicals/biologics. Application of our method would facilitate high-throughput endeavors aiming at finding environment-friendly control agents for deadly disease of pine trees.

An Evaluation of Active Case Detection in Malaria Control Program in Kiyuni Parish of Kyankwanzi District, Uganda

  • Bahk, Young Yil;Cho, Pyo Yun;Ahn, Seong Kyu;Lee, Woo-Joo;Kim, Tong-Soo;Working Groups in ChildFund Korea;Uganda, Uganda
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.625-632
    • /
    • 2018
  • Malaria remains one of the leading health burdens in the developing world, especially in several sub-Saharan Africa countries; and Uganda has some of the highest recorded measures of malaria transmission intensity in the world. It is evident that the prevalence of malaria infection, the incidence of disease, and mortality from severe malaria remain very high in Uganda. Although the recent stable political and economic situation in the last few decades in Uganda supported for a fairly good appreciation of malaria control, the declines in infection, morbidity, and mortality are not sufficient to interrupt transmission and this country is among the top 4 countries with cases of malaria, especially among children under 5 years of age. In fact, Uganda, which is endemic in over 95% of the country, is a representative of challenges facing malaria control in Africa. In this study, we evaluated an active case detection program in 6 randomly selected villages, Uganda. This program covered a potential target population of 5,017 individuals. Our team screened 12,257 samples of malaria by active case detection, every 4 months, from February 2015 to January 2017 in the 6 villages (a total of 6 times). This study assessed the perceptions and practices on malaria control in Kiyuni Parish of Kyankwanzi district, Uganda. Our study presents that the incidence of malaria is sustained high despite efforts to scale-up and improve the use of LLINs and access to ACDs, based on the average incidence confirmed by RDTs.

Relationships between the Host and it's Natural Enemy Introduced into a New Ecosystem 1. Mortality of Hyphantria cunea Drury killed by Podisus maculiventris (生態系內에서의 宿主와 天敵의 數的變動에 따른 相關關係에 關한 硏究: 1. Hyphantria cunea 의 Podisus maculiventris에 依한 被殺率에 關한 硏究)

  • Kim, Chang-Whan;Noh, Yong Tai;Chung, Young Wha
    • The Korean Journal of Zoology
    • /
    • v.12 no.4
    • /
    • pp.103-108
    • /
    • 1969
  • The present experiment was designed to learn the mortality (response per predator) of Hyphantria cunea and Podisus maculiventris, both reared in different ratios of densities in net cage. 1. Podisus maculiventris attacked about 94.6, 91.4 and 62.4% of the hosts at the ratio of densities, 200:10, 400:10 and 800:10 in each net cage in the lst generation. 2. Podisus maculiventris attacked about 96.3, 93.6 and 67% of the hosts at the ratio of densities, 200:10, 400:10 and 800:10 in each net cage in the 2nd generation. 3. About 98.7 and 98.4% of the hosts were pupated in the 1st and 2nd generations in the controlled group.

  • PDF

Anti-termite Activity of Tamanu Bark Extract (Calophyllum inophyllum L.)

  • Ainun ZALSABILA;Wasrin SYAFII;Trisna PRIADI;SYAHIDAH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.134-144
    • /
    • 2024
  • This study aimed to analyze the anti-termite properties of tamanu (Calophyllum inophyllum L.) stem bark extracts against subterranean termites, specifically, Coptotermes curvignathus. The bark powder of C. inophyllum was extracted using different solvents, such as n-hexane, ethyl acetate, and methanol, using the maceration method. Anti-termite testing was performed using two paper disc methods: no- and two-choice tests. Whatman test paper was dripped with the extract solutions at concentrations of 4%, 6%, 8%, and 10% (w/v). Subsequently, the treated paper disc was placed into an acrylic tube, and the subterranean termite was added. The parameters utilized in the test included termite mortality and the weight loss of the test paper. The results revealed that the total extract yield of C. inophyllum stem bark was 30.24%. Furthermore, the extractive substances from C. inophyllum bark exhibited anti-termite activity. The most favorable outcomes were obtained with the n-hexane and ethyl acetate extracts at a concentration of 10%. The termite mortality and weight loss of the test paper were respectively 66% and 5.67% for the n-hexane extract and 66.67% and 6.19% for the ethyl acetate extract. In addition, the n-hexane extract contained friedelan-3-one, while the ethyl acetate extract contained 1,2-benzene dicarboxylic acid, dinonyl ester, and friedelan-3-one. The results suggested that these compounds are responsible for the observed anti-termite activity.

Isolation and Identification of Entomopathogenic Bacteria for Biological Control of the Mushroom Fly, Lycoriella mali (느타리 재배에서 버섯파리의 생물학적 방제를 위한 곤충병원성 세균의 분리 및 동정)

  • Lee, Su-Hee;Lim, Eun-Kyung;Choi, Kwang-Ho;Lee, Jae-Pil;Lee, Hyun-Ouk;Kim, Ik-Soo;Moon, Byung-Ju
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2002
  • The study was conducted to isolate and identify insecticidal bacteria for biological control of larvae of mushroom fly, Lycoriella mali, which is one of serious pests to oyster mushrooms during its cultivation period. Among eight bacteria isolated from the soil in the oyster mushroom beds and the dead body of L. mali, two bacteria, Bti-D and Bti-U showed more toxicity with mortality rate than other six-bacteria isolates. The two bacteria showed more toxicity in three instar of the period of development of the mushroom fly than in other instar. Symptoms of the larvae of L. mali infected by the two bacteria developed as follows: at the early infection, the front middle gut changed color to light brown, the middle gut to brown, whole body to black brown, and eventually, the fly died. For the identification of these isolates, cultural and biochemical characteristics by Bergey's manual and Biolog system, cell morphology by TEM, endospore and endotoxin by phase-contrast microscope, and test using 33H antisera were examined. According to the results, these two isolates, Bti-D and Bti-U were identified as Bacillus thuringiensis subsp. israelensis respectively.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms

  • Lim, An Suk;Jeong, Hae Jin;Seong, Kyeong Ah;Lee, Moo Joon;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Park, Jae Yeon;Jang, Tae Young;Yoo, Yeong Du
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.199-222
    • /
    • 2017
  • Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimizing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abundances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotrophic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species. The abundances of HTDs, TCs, and NCs over the course of this study were high during or after red tides, with maximum abundances of 82, 49, and $35cells\;mL^{-1}$, respectively. In general, the dominant heterotrophic protists differed when different species caused red tides. The HTDs Polykrikos spp. and NCs were abundant during or after C. polykrikoides red tides. The mean and maximum calculated grazing coefficients of Polykrikos spp. and NCs on populations of co-occurring C. polykrikoides were $1.63d^{-1}$ and $12.92d^{-1}$, respectively. Moreover, during or after red tides dominated by the phototrophic dinoflagellates Prorocentrum donghaiense, Ceratium furca, and Alexandrium fraterculus, which formed serial red tides prior to the occurrence of C. polykrikoides red tides, the HTDs Gyrodinium spp., Polykrikos spp., and Gyrodinium spp., respectively were abundant. The maximum calculated grazing coefficients attributable to dominant heterotrophic protists on co-occurring P. donghaiense, C. furca, and A. fraterculus were 13.12, 4.13, and $2.00d^{-1}$, respectively. Thus, heterotrophic protists may sometimes have considerable potential grazing impacts on populations of these four red tide species in the study area.

Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions

  • Lee, Kyung Ha;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah
    • ALGAE
    • /
    • v.34 no.3
    • /
    • pp.237-251
    • /
    • 2019
  • The dinoflagellate genus Alexandrium is known to often form harmful algal blooms causing human illness and large-scale mortality of marine organisms. Therefore, the population dynamics of Alexandrium species are of primary concern to scientists and aquaculture farmers. The growth rate of the Alexandrium species is the most important parameter in prediction models and nutrient conditions are critical parameters affecting the growth of phototrophic species. In Korean coastal waters, Alexandrium affine and Alexandrium fraterculus, of similar sizes, often form red-tide patches together. Thus, to understand bloom dynamics of A. affine and A. fraterculus, growth rates and nitrate uptake of each species as a function of nitrate ($NO_3$) concentration at $100{\mu}mol\;photons\;m^{-2}s^{-1}$ under 14-h light : 10-h dark and continuous light conditions were determined using a nutrient repletion method. With increasing $NO_3$ concentration, growth rates and $NO_3$ uptake of A. affine or A. fraterculus increased, but became saturated. Under light : dark conditions, the maximum growth rates of A. affine and A. fraterculus were 0.45 and $0.42d^{-1}$, respectively. However, under continuous light conditions, the maximum growth rate of A. affine slightly increased to $0.46d^{-1}$, but that of A. fraterculus largely decreased. Furthermore, the maximum nitrate uptake of A. affine and A. fraterculus under light : dark conditions were 12.9 and $30.1pM\;cell^{-1}d^{-1}$, respectively. The maximum nitrate uptake of A. affine under continuous light conditions was $16.4pM\;cell^{-1}d^{-1}$. Thus, A. affine and A. fraterculus have similar maximum growth rates at the given $NO_3$ concentration ranges, but they have different maximum nitrate uptake rates. A. affine may have a higher conversion rate of $NO_3$ to body nitrogen than A. fraterculus. Moreover, a longer exposure time to the light may confer an advantage to A. affine over A. fraterculus.

Anti-Termite Activity of Azadirachta excelsa Seed Kernel and Its Isolated Compound against Coptotermes curvignathus

  • Morina ADFA;Khafit WIRADIMAFAN;Ricky Febri PRATAMA;Angga SANJAYA;Deni Agus TRIAWAN;Salprima YUDHA S.;Masayuki NINOMIYA;Mohamad RAFI;Mamoru KOKETSU
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.157-172
    • /
    • 2023
  • Azadirachta excelsa, is a plant belonging to the same genus as Indian neem (Azadirachta indica), and its use as a pesticide is reported by few studies. Despite being a different species, it is expected to have the same biopesticide potential as A. indica. Therefore, this study aims to investigate the anti-termite activity of n-hexane and methanol extracts of A. excelsa seed kernel at various concentrations against Coptotermes curvignathus. The methanol extract demonstrated greater termicidal activity than n-hexane at doses test of 2%, 4%, and 8%. It also showed 100% termite mortality on the third day of administering the 8% dose. According to the gas chromatography with mass spectrometry data, the putative main components of the n-hexane extract were hexadecanoic acid, ethyl ester (18.99%), 9,12-octadecadienoic acid (Z,Z)- (16.31%), and 9-octadecenal (16.23%). In contrast, the principal constituents of methanol extract were patchouli alcohol (28.1%), delta-guaiene (15.15%), and alpha-guaiene (11.93%). Furthermore, limonoids profiling of A. excelsa methanol extract was determined using Ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry. The number of limonoids identified tentatively was fifteen, such as 6-deacetylnimbin, nimbolidin C, nimbolide, 6-acetylnimbandiol, 6-deacetyl-nimbinene, salannol, 28-deoxonimbolide, gedunin, nimbandiol, epoxyazadiradione, azadirone, 2',3'-dihydrosalannin, marrangin, nimbocinol, and azadirachtin. They were the same as those reported in the seed and leaves of A. indica, but its largest component in A. excelsa was 6-deacetylnimbin. As a result, the presence of these compounds may be responsible for the anti-termite activity of A. excelsa seed kernel extract. Additionally, column chromatography of methanol extract yielded 6-deacetylnimbin, which was found to be antifeedant and termiticide against C. curvignathus.