DOI QR코드

DOI QR Code

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms

  • Lim, An Suk (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Seong, Kyeong Ah (Department of Marine Biotechnology, Kunsan National University) ;
  • Lee, Moo Joon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kang, Nam Seon (Marine Biodiversity Institute of Korea) ;
  • Jang, Se Hyeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lee, Kyung Ha (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Park, Jae Yeon (Advanced Institutes of Convergence Technology) ;
  • Jang, Tae Young (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Yoo, Yeong Du (Department of Marine Biotechnology, Kunsan National University)
  • Received : 2017.07.20
  • Accepted : 2017.08.25
  • Published : 2017.09.30

Abstract

Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimizing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abundances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotrophic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species. The abundances of HTDs, TCs, and NCs over the course of this study were high during or after red tides, with maximum abundances of 82, 49, and $35cells\;mL^{-1}$, respectively. In general, the dominant heterotrophic protists differed when different species caused red tides. The HTDs Polykrikos spp. and NCs were abundant during or after C. polykrikoides red tides. The mean and maximum calculated grazing coefficients of Polykrikos spp. and NCs on populations of co-occurring C. polykrikoides were $1.63d^{-1}$ and $12.92d^{-1}$, respectively. Moreover, during or after red tides dominated by the phototrophic dinoflagellates Prorocentrum donghaiense, Ceratium furca, and Alexandrium fraterculus, which formed serial red tides prior to the occurrence of C. polykrikoides red tides, the HTDs Gyrodinium spp., Polykrikos spp., and Gyrodinium spp., respectively were abundant. The maximum calculated grazing coefficients attributable to dominant heterotrophic protists on co-occurring P. donghaiense, C. furca, and A. fraterculus were 13.12, 4.13, and $2.00d^{-1}$, respectively. Thus, heterotrophic protists may sometimes have considerable potential grazing impacts on populations of these four red tide species in the study area.

Keywords

References

  1. Admiraal, W., Beukema, J. & van Es, F. B. 1985. Seasonal fluctuations in the biomass and metabolic activity of bacterioplankton and phytoplankton in a well-mixed estuary: the Ems-Dollard (Wadden Sea). J. Plankton Res. 7:877-890. https://doi.org/10.1093/plankt/7.6.877
  2. Admiraal, W. & Venekamp, L. A. H. 1986. Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth. J. Sea Res. 20:61-66. https://doi.org/10.1016/0077-7579(86)90061-X
  3. Anderson, D. M. 1995. ECOHAB: the ecology and oceanography of harmful algal blooms: a national research agenda. Woods Hole Oceanographic Institute, Woods Hole, MA, 66 pp.
  4. Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E. & Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10-35. https://doi.org/10.1016/j.hal.2011.10.012
  5. Baek, S. H., You, K., Katano, T. & Shin, K. 2010. Effects of temperature, salinity, and prey organisms on the growth of three Pfiesteria-like heterotrophic dinoflagellates. Plankton Benthos Res. 5:31-38. https://doi.org/10.3800/pbr.5.31
  6. Biswas, S. N., Godhantaraman, N., Rakashit, D. & Sarkar, S. K. 2013. Community composition, abundance, biomass and production rates of Tintinnids (Ciliate: Protozoa) in the coastal regions of Sundarban Mangrove wetland, India. Indian J. Geo-Mar. Sci. 42:163-173.
  7. Cai, Q., Li, R., Zhen, Y., Mi, T. & Yu, Z. 2006. Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae 5:300-309. https://doi.org/10.1016/j.hal.2005.08.002
  8. Calbet, A., Vaque, D., Felipe, J., Vila, M., Sala, M. M., Alcaraz, M. & Estrada, M. 2003. Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar. Ecol. Prog. Ser. 259:303-309. https://doi.org/10.3354/meps259303
  9. Capriulo, G. M. & Carpenter, E. J. 1983. Abundance, species composition and feeding impact of tintinnid micro-zooplankton in central Long Island Sound. Mar. Ecol. Prog. Ser. 10:277-288. https://doi.org/10.3354/meps010277
  10. Cho, E. -S. 2006. Report on Protoperidinium sp. fed on Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae). J. Environ. Sci. 15:385-386.
  11. Claustre, H., Sciandra, A. & Vaulot, D. 2008. Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program. Biogeosci. Discussions 5:605-640. https://doi.org/10.5194/bgd-5-605-2008
  12. Dale, T. & Dahl, E. 1987. Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J. Plankton Res. 9:871-879. https://doi.org/10.1093/plankt/9.5.871
  13. Eaton, A. D., Clesceri, L. S., Greenberg, A. E. & Franson, M. A. H. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association (APHA), Washington, DC, 43 pp.
  14. Eppley, R. W. & Harrison, W. G. 1975. Physiological ecology of Gonyaulax polyedrum, a red tide water dinoflagellate of southern California. In Locicero, V. R. (Ed.) Proc. 1st Int. Conf. Toxic Dinoflagellate Blooms, Massachusetts Science and Technology Foundation, Wakefield, MA, pp. 11-22.
  15. Franks, P. J. S. & Anderson, D. M. 1992. Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine. Mar. Biol. 112:153-164. https://doi.org/10.1007/BF00349739
  16. Fu, F. X., Tatters, A. O. & Hutchins, D. A. 2012. Global change and the future of harmful algal blooms in the ocean. Mar. Ecol. Prog. Ser. 470:207-233. https://doi.org/10.3354/meps10047
  17. Fukuyo, Y., Imai, I., Kodama, M. & Tamai, K. 2002. Red tides and other harmful algal blooms in Japan. In Tayler, F. J. R. & Trainer, V. L. (Eds.) Harmful Algal Blooms in the PICES Region of the North Pacific. PICES Sci. Rep. No. 23. North Pacific Marine Science Organization (PICES) Institute of Ocean Sciences, Sidney, BC, pp. 7-20.
  18. Glasgow, H. B., Burkholder, J. M., Mallin, M. A., Deamer-Melia, N. J. & Reed, R. E. 2001. Field ecology of toxic Pfiesteria complex species and a conservative analysis of their role in estuarine fish kills. Environ. Health Perspect. 109(Suppl. 5):715-730. https://doi.org/10.1289/ehp.01109s5715
  19. Glibert, P. M., Anderson, D. M., Gentein, P., Graneli, E. & Sellner, K. G. 2005. The global, complex phenomena of harmful algal blooms. Oceanography 18:136-147.
  20. Gobler, C. J., Berry, D. L., Anderson, O. R., Burson, A., Koch, F., Rodgers, B. S., Moore, L. K., Goleski, J. A., Allam, B., Bowser, P., Tang, Y. & Nuzzi, R. 2008. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7:293-307. https://doi.org/10.1016/j.hal.2007.12.006
  21. Graziano, C. 1989. On the ecology of tintinnids (Ciliophora: Oligotrichida) in the North Irish Sea. Estuar. Coast. Shelf Sci. 29:233-245. https://doi.org/10.1016/0272-7714(89)90055-3
  22. Gu, H., Luo, Z., Lin, L. & Gao, Y. 2014. First report of Gyrodinium fusiforme and G. moestrupii (Dinophyceae) in China Sea waters. Biodivers. Sci. 22:401-406. https://doi.org/10.3724/SP.J.1003.2014.13226
  23. Hansen, P. J. 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73:253-261. https://doi.org/10.3354/meps073253
  24. Hansen, P. J., Bjornsen, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2000-${\mu}m$ body size range. Limnol. Oceanogr. 42:687-704. https://doi.org/10.4319/lo.1997.42.4.0687
  25. Holmes, R. W., Williams, P. M. & Eppley, R. W. 1967. Red water in La Jolla Bay, 1964-1966. Limnol. Oceanogr. 12:503-512. https://doi.org/10.4319/lo.1967.12.3.0503
  26. Hong, H. -H., Lee, H. -G., Jo, J., Kim, H. M., Kim, S. -M., Park, J. Y., Jeon, C. B., Kang, H. -S., Park, M. G., Park, C. & Kim, K. Y. 2016. The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry. Algae 31:373-378. https://doi.org/10.4490/algae.2016.31.12.6
  27. Horner, R. A., Garrison, D. L. & Plumley, F. G. 1997. Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanogr. 42(5 Pt. 2):1076-1088. https://doi.org/10.4319/lo.1997.42.5_part_2.1076
  28. Hu, Z., Mulholland, M. R., Duan, S. & Xu, N. 2012. Effects of nitrogen supply and its composition on the growth of Prorocentrum donghaiense. Harmful Algae 13:72-82. https://doi.org/10.1016/j.hal.2011.10.004
  29. Imai, I., Yamaguchi, M. & Hori, Y. 2006. Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res. 1:71-84. https://doi.org/10.3800/pbr.1.71
  30. Jang, S. H., Jeong, H. J., Lim, A. S., Kwon, J. E. & Kang, N. S. 2016. Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae. Algae 31:17-31. https://doi.org/10.4490/algae.2016.31.2.2
  31. Jeong, H. J., Ha, J. H., Park, J. Y., Kim, J. H., Kang, N. S., Kim, S., Kim, J. S., Yoo, Y. D. & Yih, W. H. 2006. Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes and fish blood cells. Aquat. Microb. Ecol. 44:263-278. https://doi.org/10.3354/ame044263
  32. Jeong, H. J., Ha, J. H., Yoo, Y. D., Park, J. Y., Kim, J. H., Kang, N. S., Kim, T. H., Kim, H. S. & Yih, W. H. 2007. Feeding by the Pfiesteria-like heterotrophic dinoflagellate Luciella masanensis. J. Eukaryotic Microbiol. 54:231-241. https://doi.org/10.1111/j.1550-7408.2007.00259.x
  33. Jeong, H. J., Kim, J. S., Kim, J. H., Kim, S. T., Seong, K. A., Kim, T. H., Song, J. Y. & Kim, S. K. 2005. Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar. Ecol. Prog. Ser. 295:69-78. https://doi.org/10.3354/meps295069
  34. Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Song, J. Y., Kim, T. H., Seong, K. A., Kang, N. S., Kim, M. S., Kim, J. H., Kim, S., Ryu, J., Lee, H. M. & Yih, W. H. 2008. Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368-377. https://doi.org/10.1016/j.hal.2007.12.004
  35. Jeong, H. J., Kim, S. K., Kim, J. S., Kim, S. T., Yoo, Y. D. & Yoon, J. Y. 2001. Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J. Eukaryot. Microbiol. 48:298-308. https://doi.org/10.1111/j.1550-7408.2001.tb00318.x
  36. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  37. Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130. https://doi.org/10.4490/algae.2017.32.5.30
  38. Jeong, H. J., Park, J. K., Kim, J. S., Kim, S. T., Yoon, J. E., Kim, S. K. & Park, Y. M. 2000. The outbreak of red tides in the coastal waters off Kohung, Chonnam, Korea. 3. The temporal and spatial variations in the heterotrophic dinoflagellates and ciliates in 1997. J. Korean Soc. Oceangr. 5:37-46.
  39. Jeong, H. J., Shim, J. H., Lee, C. W., Kim, J. S. & Koh, S. M. 1999. Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates. J. Eukaryot. Microbiol. 46:69-76. https://doi.org/10.1111/j.1550-7408.1999.tb04586.x
  40. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  41. Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88. https://doi.org/10.1016/j.hal.2013.10.008
  42. Johnson, M. D., Rome, M. & Stoecker, D. K. 2003. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48:238-248. https://doi.org/10.4319/lo.2003.48.1.0238
  43. Kamiyama, T. & Tsujino, M. 1996. Seasonal variation in the species composition of tintinnid ciliates in Hiroshima Bay, the Seto Inland Sea of Japan. J. Plankton Res. 18:2313-2327. https://doi.org/10.1093/plankt/18.12.2313
  44. Kim, J. S. 2004. Grazing impact of protozooplankton on red tide organisms in the southern and western coastal waters of Korea. Ph. D. dissertation, Kunsan National University, Gunsan, Korea, 238 pp.
  45. Kim, J. S. & Jeong, H. J. 2004. Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 280:85-94. https://doi.org/10.3354/meps280085
  46. Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86. https://doi.org/10.1016/j.hal.2011.10.015
  47. Lan, W., Huang, B., Dai, M., Ning, X., Huang, L. & Hong, H. 2009. Dynamics of heterotrophic dinoflagellates off the Pearl River Estuary, northern South China Sea. Estuar. Coast. Shelf Sci. 85:422-430. https://doi.org/10.1016/j.ecss.2009.09.008
  48. Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., Kim, J. H. & Kim, K. Y. 2015. Mixotrophy in nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmarnii. Harmful Algae 49:124-134. https://doi.org/10.1016/j.hal.2015.08.006
  49. Lessard, E. J. 1991. The trophic role of heterotrophic dinoflagellates in diverse marine environments. Mar. Microb. Food Webs 5:49-58.
  50. Lim, A. S., Jeong, H. J., Jang, T. Y., Jang, S. H. & Franks, P. J. S. 2014a. Inhibition of growth rate and swimming speed of the harmful dinoflagellate Cochlodinium polykrikoides by diatoms: implications for red tide formation. Harmful Algae 37:53-61. https://doi.org/10.1016/j.hal.2014.05.003
  51. Lim, A. S., Jeong, H. J., Jang, T. Y., Yoo, Y. D., Kang, N. S., Yoon, E. Y. & Kim, G. H. 2014b. Feeding by the newly described heterotrophic dinoflagellate Stoeckeria changwonensis: a comparison with other species in the family Pfiesteriaceae. Harmful Algae 36:11-21. https://doi.org/10.1016/j.hal.2014.04.001
  52. Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18. https://doi.org/10.1016/j.hal.2015.07.010
  53. Lim, A. S., Jeong, H. J., Kim, J. H. & Lee, S. Y. 2017. Control of ichthyotoxic Cochlodinium polykrikoides using the mixotrophic dinoflagellate Alexandrium pohangense: a potential effective sustainable method. Harmful Algae 63:109-118. https://doi.org/10.1016/j.hal.2017.02.001
  54. MacKenzie, L., de Salas, M., Adamson, J. & Beuzenberg, V. 2004. The dinoflagellate genus Alexandrium (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. Harmful Algae 3:71-92. https://doi.org/10.1016/j.hal.2003.09.001
  55. Masquelier, S. & Vaulot, D. 2008. Distribution of micro-organisms along a transect in the South-East Pacific Ocean (BIOSOPE cruise) using epifluorescence microscopy. Biogeosciences 5:311-321. https://doi.org/10.5194/bg-5-311-2008
  56. Modigh, M. & Castaldo, S. 2002. Variability and persistence in tintinnid assemblages at a Mediterranean coastal site. Aquat. Microb. Ecol. 28:299-311. https://doi.org/10.3354/ame028299
  57. Moncheva, S., Gotsis-Skretas, O., Pagou, K. & Krastev, A. 2001. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuar. Coast. Shelf Sci. 53:281-295. https://doi.org/10.1006/ecss.2001.0767
  58. Montagnes, D. J. S. & Lessard, E. J. 1999. Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat. Microb. Ecol. 20:167-181. https://doi.org/10.3354/ame020167
  59. Mulholland, M. R., Morse, R. E., Boneillo, G. E., Bernhardt, P. W., Filippino, K. C., Procise, L. A., Blanco-Garcia, J. L., Marshall, H. G., Egerton, T. A., Hunley, W. S., Moore, K. A., Berry, D. L. & Gobler, C. J. 2009. Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuar. Coast. 32:734-747. https://doi.org/10.1007/s12237-009-9169-5
  60. Nagai, S., Nishitani, G., Takano, Y., Yoshida, M. & Takayama, H. 2009. Encystment and excystment under laboratory conditions of the nontoxic dinoflagellate Alexandrium fraterculus (Dinophyceae) isolated from the Seto Inland Sea, Japan. Phycologia 48:177-185. https://doi.org/10.2216/08-43.1
  61. Nakamura, Y., Suzuki, S. & Hiromi, J. 1995. Population dynamics of heterotrophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea. Mar. Ecol. Prog. Ser. 125:269-277. https://doi.org/10.3354/meps125269
  62. National Fisheries Research & Development Institute (NFRDI). 2014. Harmful Algal Blooms in Korean Coastal Waters in 2013. NFRDI, Busan, pp. 114-130.
  63. Nielsen, T. & Andersen, C. 2002. Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar. Biol. 141:707-724. https://doi.org/10.1007/s00227-002-0868-8
  64. Olseng, C. D., Naustvoll, L. -J. & Paasche, E. 2002. Grazing by the heterotrophic dinoflagellate Protoperidinium steinii on a Ceratium bloom. Mar. Ecol. Prog. Ser. 225:161-167. https://doi.org/10.3354/meps225161
  65. Omachi, C. Y., Tamanaha, M. S. & Proença, L. A. O. 2007. Bloom of Alexandrium fraterculus in coastal waters off Itajai, SC, Southern Brazil. Braz. J. Oceanogr. 55:57-61. https://doi.org/10.1590/S1679-87592007000100007
  66. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013a. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40. https://doi.org/10.1016/j.hal.2013.10.004
  67. Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013b. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143. https://doi.org/10.1016/j.hal.2013.10.012
  68. Pierce, R. W. & Turner, J. T. 1994. Plankton studies in Buzzards Bay, Massachusetts, USA. IV. Tintinnids, 1987 to 1988. Mar. Ecol. Prog. Ser. 112:235-240. https://doi.org/10.3354/meps112235
  69. Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  70. Sherr, E. B. & Sherr, B. F. 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352:187-197. https://doi.org/10.3354/meps07161
  71. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Graneli, E., Sundstrom, B., Edler, L. & Anderson, D. M. (Eds.) Toxic Marine Phytoplankton. Elsevier Publishers B.V., Amsterdam, pp. 29-40.
  72. Sordo, I., Barton, E. D., Cotos, J. M. & Pazos, Y. 2001. An inshore poleward current in the NW of the Iberian Peninsula detected from satellite images, and its relation with G. catenatum and D. acuminata blooms in the Galican Rias. Estuar. Coast. Shelf Sci. 53:787-799. https://doi.org/10.1006/ecss.2000.0788
  73. Tang, D., Di, B., Wei, G., Ni, I. -H., Oh, I. S. & Wang, S. 2006. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia 568:245-253. https://doi.org/10.1007/s10750-006-0108-1
  74. Turner, J. T. 2006. Harmful algae interactions with marine planktonic grazers. In Graneli, E. & Turner, J. T. (Eds.) Ecology of Harmful Algae. Springer, Berlin-Heidelberg, pp. 259-270.
  75. Verity, P. G. 1987. Abundance, community composition, size distribution, and production rates of tintinnids in Narragansett Bay, Rhode Island. Estuar. Coast. Shelf Sci. 24:671-690. https://doi.org/10.1016/0272-7714(87)90106-5
  76. Welch, P. S. 1948. Limnological methods. Blakiston Co., Philadelphia, PA, 381 pp.
  77. Whyte, J. N. C., Haigh, N., Ginther, N. G. & Keddy, L. J. 2001. First record of blooms of Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycologia 40:298-304.
  78. Yang, E. J., Choi, J. K. & Hyun, J. -H. 2008. Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci. 77:320-330. https://doi.org/10.1016/j.ecss.2007.09.034
  79. Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013a. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101. https://doi.org/10.1016/j.hal.2013.10.009
  80. Yoo, Y. D., Yoon, E. Y., Jeong, H. J., Lee, K. H., Hwang, Y. J., Seong, K. A., Kim, J. S. & Park, J. Y. 2013b. The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates. J. Eukaryot. Microbiol. 60:13-24. https://doi.org/10.1111/jeu.12002
  81. Zhang, S., Liu, H., Chen, B. & Wu, C. -J. 2015. Effects of diet nutritional quality on the growth and grazing of Noctiluca scintillans. Mar. Ecol. Prog. Ser. 527:73-85. https://doi.org/10.3354/meps11219

Cited by

  1. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.28
  2. Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.27
  3. (Dinophyceae), one of the fastest growing dinoflagellates vol.54, pp.5, 2018, https://doi.org/10.1111/jpy.12775
  4. and Common Heterotrophic Protists vol.65, pp.5, 2018, https://doi.org/10.1111/jeu.12506
  5. Morphological and genetic characterization and the nationwide distribution of the phototrophic dinoflagellate Scrippsiella lachrymosa in the Korean waters vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.3.4
  6. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea vol.34, pp.1, 2017, https://doi.org/10.4490/algae.2019.34.2.28
  7. Opportunistic Species and Seasonal Variation in Epiphytic Foraminiferal Assemblages in Abalone Farm Nets vol.35, pp.3, 2017, https://doi.org/10.2112/jcoastres-d-18-00057.1
  8. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.5.29
  9. Differential feeding by common heterotrophic protists on four Scrippsiella species of similar size vol.55, pp.4, 2017, https://doi.org/10.1111/jpy.12864
  10. Five Alexandrium species lacking mixotrophic ability vol.34, pp.4, 2019, https://doi.org/10.4490/algae.2019.34.11.21
  11. Feeding by common heterotrophic protist predators on seven Prorocentrum species vol.35, pp.1, 2017, https://doi.org/10.4490/algae.2020.35.2.28
  12. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters vol.35, pp.3, 2020, https://doi.org/10.4490/algae.2020.35.8.25
  13. Feeding by the newly described heterotrophic dinoflagellate Gyrodinium jinhaense: comparison with G. dominans and G. moestrupii vol.167, pp.10, 2017, https://doi.org/10.1007/s00227-020-03769-9
  14. Interactions Between the Kleptoplastidic Dinoflagellate Shimiella gracilenta and Several Common Heterotrophic Protists vol.8, pp.None, 2017, https://doi.org/10.3389/fmars.2021.738547
  15. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020 vol.36, pp.1, 2017, https://doi.org/10.4490/algae.2021.36.2.22
  16. Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters vol.36, pp.1, 2017, https://doi.org/10.4490/algae.2021.36.3.4