• Title/Summary/Keyword: natural measure

Search Result 1,033, Processing Time 0.028 seconds

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

Experiment on measures of heat collection for passive solar water wall systems that provide heat storage and natural lighting control (축열과 채광조절을 겸한 자연형 태양열 수벽시스템의 집열방식별 성능실험)

  • Oh, Young-hoon;Choi, Ji-eun;Lee, Chul-sung;Yoon, Jong-ho
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • Purpose: This preliminary study investigated a potential of the water wall systems that provide heat storage and natural lighting control simultaneously. Method: In order for transparency of the water wall to be controlled, the study first proposed two measures: to adjust transparency of the water wall; to control transparency of water wall surface. The performance of two measures then was verified and compared by experiments. In addition, a trade-off between heat collect and heat storage resulting from using additive for adjusting transparency was investigated. Result: The experiment showed that the two measures are similar in performance. The investigation of trade-off relation showed the additive should have the same heat storage as the water to prevent decrease in thermal performance of the water wall. As an economical measure to control transparency of the water wall, this study suggested a measure of secondary heat transfer systems using shading device that first absorbs solar radiation and then transfers heat to the water wall. The experiment show that performance of the proposed measure is similar to controlling transparency of water wall surface. In conclusion, it is expected that the performance of the water wall can be economically maximized by using the proposed mean in terms of heating, cooling and lighting energy saving.

Reconsideration of F1 Score as a Performance Measure in Mass Spectrometry-based Metabolomics

  • Jeong, Jaesik;Kim, Han Sol;Kim, Shin June
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.161-164
    • /
    • 2018
  • Over the past decade, mass spectrometry-based metabolomics, especially two dimensional gas chromatography mass spectrometry (GCxGC/TOF-MS), has become a key analytical tool for metabolomics data because of its sensitivity and ability to analyze complex biological or biochemical sample. However, the need to reduce variations within/between experiments has been reported and methodological developments to overcome such problem has long been a critical issue. Along with methodological developments, developing reasonable performance measure has also been studied. Following four numerical measures have been typically used for comparison: sensitivity, specificity, receiver operating characteristic (ROC) curves, and positive predictive value (PPV). However, more recently, such measures are replaced with F1 score in many fields including metabolomics area without any carefulness of its validity. Thus, we want to investigate the validity of F1 score on two examples, with the goal of raising the awareness in choosing appropriate performance comparison measure. We noticed that F1 score itself, as a performance measure, was not good enough. Accordingly, we suggest that F1 score be supplemented with other performance measure such as specificity to improve its validity.

Comparison of the Structure of Grassland Communities and the Performance of Galcicoles and Calcifuges on the Limiestone and the Granite Areas (石灰岩과 花崗岩地帶에서 草地群落의 構造 및 好石灰植物과 嫌石灰植物의 成就度 比校)

  • Kwak, Young-Se;Chin, Kuk-Jeong;Min, Kuem-Suk;Kim, Joon-Ho;Choung, Yeon-Sook
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • Structure of grassland communities was investigated, and performance of populations of Themeda triandra var. japonica and Miscanthus sinensis were compared on limestone and granite soils. Forty three and forty taxa occurred on the limestone and granite grasslands, respectively, but their similarity was very low. Shoot height and number of hills per patch, as a measure of performance, of Themeda on the limestone grassland were higherthan those on the granite grassland. In contrast, shoot height and number on hills per patch of Miscanthus were higher on limestone than granite grassland. Evidence shows that poor growth of Micanthus population on the limestone soil was associated with higher content of insoluble divalent cations than soluble ones in shoot tissue.

  • PDF

Biodegradable Starch-Based Resin Reinforced with Continuous Mineral Fibres-Processing, Characterisation and Mechanical Properties

  • Wittek, Thomas;Tanimoto, Toshio
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.167-185
    • /
    • 2009
  • Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials like petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and natural mineral basalt fibres as reinforcement, and investigates the fibre's and the composite's mechanical properties. The tensile strength of single basalt fibres was verified by means of single fibre tensile tests and statistically investigated by means of a Weibull analysis. Prepreg sheets were manufactured by means of a modified doctor blade system and hot power press. The sheets were used to manufacture specimens with fibre volume contents ranging from 33% to 61%. Specimens were tested for tensile strength, flexural strength and interlaminar shear strength. Composites manufactured during this study exhibited tensile and flexural strength of up to 517 MPa and 157 MPa, respectively.

Noise and Vibration Characteristics by Heavy-weight Floor Impact (중량바닥충격에 의한 소음 및 진동 특성)

  • 서상호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

An Analysis of Meteorological Disasters Occurred in the Korean Peninsula (한반도에서 발생되는 기상재해 분석)

  • Park Jong-Kil;Jang Eun-Suk;Choi Hyo-Jin
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.613-619
    • /
    • 2005
  • Recently, we are suffered enormous loss from a natural disaster and making an effort to prepare measures for dealing with disasters. This study shows the major causes of natural disasters and stricken area with the analysis of meteorological data based on the Korean Meteorological Administration and the Central Disaster Relief Center records during 1987-2003 and classifies natural disasters according to the causes and damaged conditions. In this study, the most damaged area were Gangwon, Gyeongnam and Gyeongi province as a result of a typhoon and a localized heavy rain. To establish an effective disaster measure for these area, detailed prevention plans should be established by its causes after investigating precise regional damage data analysis.

Characterization of Natural Organic Matter in Spring Water

  • Yoo, Hee-Jin;Choi, Yoon-Ji;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.90-94
    • /
    • 2020
  • Interest in aspects of industrialization relating to human health has increased. Accordingly, the use of labels such as 'natural foods' and 'organic ingredients' has become more widespread, and greater emphasis is being placed on improving quality of life. Water is an essential element for human life, and water quality has a significant impact on human health. However, technology that can precisely determine the substances present in water is still lacking. This study was conducted to establish a complete mass spectrometry process, from pretreatment to analysis, to measure and characterize natural organic matter (NOM) in Korean spring water samples. Salts and other matrices were removed from the samples using solid-phase extraction (SPE) with two different columns (PPL and C18). After establishing an accurate analysis method, the experimental results were evaluated based on Van Krevelen diagrams and analysis of molar O/C and H/C ratios. The method for characterizing NOM introduced herein should facilitate evaluation of water quality.

Natural wind impact analysis of transiting test method to measure wind pressure coefficients

  • Liu, Lulu;Li, Shengli;Guo, Pan;Wang, Xidong
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.199-210
    • /
    • 2020
  • Building wind pressure coefficient transiting test is a new method to test the building wind pressure coefficient by using the wind generated by a moving vehicle, which is susceptible to natural wind and other factors. In this paper, the Commonwealth Advisory Aeronautical Research Council standard model with a scale ratio of 1:300 is used as the test object, and the wind pressure coefficient transiting test is repeated under different natural wind conditions to study the influence of natural wind. Natural wind is measured by an ultrasonic anemometer at a fixed location. All building wind pressure coefficient transiting tests meet the test conditions, and the vehicle's driving speed is 72 km/h. The mean wind pressure coefficient, the fluctuating wind pressure coefficient, and the correlation coefficient of wind pressure are used to describe the influence of natural wind on the building wind pressure coefficient transiting test qualitatively and quantitatively. Some rules, which can also help subsequent transiting tests, are also summarized.