Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.503-504
/
2022
최근 자연어 처리 분야에서 언어 모델을 활용하여 문장 생성에 관한 연구가 이루어지고 있다. 기존 언어 모델을 활용하여 생성된 시나리오는 텍스트를 학습하여 활용하는 것 외에는 작가의 의도를 반영하는 것에 한계가 존재했고 문맥에 일관성 없는 모습을 보여주었다. 시나리오를 작성하는 것은 작가가 흐름을 주도하며 작업해야 하는 내용이다. 본 논문에서는 GPT-3 기반 언어 모델을 기반으로 다양한 시나리오 문장을 생성하여 작가가 선택하거나 원하는 문장을 직접 입력하는 등 작가의 의도에 부합하는 시나리오를 생성하는 보조 시스템을 제안한다. 본 연구를 통해 시나리오 생성을 포함한 문장 생성 분야의 보조 도구로 활용하여 작가의 의도를 반영하는 결과물을 생성하는 것을 목표로 한다.
While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.
The Transactions of the Korea Information Processing Society
/
v.4
no.12
/
pp.3052-3062
/
1997
An Information Retrieval (IR) is to retrieve relevant information that satisfies user's information needs. However a major role of IR systems is not just the generation of sets of relevant documents, but to help determine which documents are most likely to be relevant to the given requirements. Various attempts have been made in the recent past to use syntactic analysis methods for the generation of complex construction that are essential for content identification in various automatic text analysis systems. Unfortunately, it is known that methods based on syntactic understanding alone are not sufficiently powerful to Produce complete analyses of arbitrary text samples. In this paper, we present a document ranking method based on two-level ranking. The first level is used to retrieve the documents, and the second level to reorder the retrieved documents. The main keywords used in the first level can be defined as nouns and/or compound nouns that possess good document discrimination powers. The sub-keywords used in the second level can be also defined as adjectives, adverbs, and/or verbs that are not main keywords, and function words. An empirical study was conducted from a Korean encyclopedia with 23,113 entries and 161 Korean natural language queries collected by end users. 850% of the natural language queries contained sub-keywords. The two-level document ranking methods provides significant improvement in retrieval effectiveness over traditional ranking methods.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.425-429
/
2018
지식 그래프는 많은 수의 개채와 이들 사이의 관계를 저장하고 있기 때문에 많은 연구에서 중요한 자원으로 활용된다. 최근에는 챗봇과 질의응답과 같은 연구에서 자연어 생성을 위한 연구에 활용되고 있다. 특히 자연어 생성에서 최근 발전 된 심층 신경망이 사용되고 있는데, 이러한 방식은 모델 학습을 위한 많은 양의 데이터가 필요하다. 즉, 심층신경망을 기반으로 지식 그래프에서 문장을 생성하기 위해서는 많은 트리플과 문장 쌍 데이터가 필요하지만 학습을 위해 사용하기엔 데이터가 부족하다는 문제가 있다. 따라서 본 논문에서는 데이터 부족 문제를 해결하기 위해 핵심어 시퀀스를 추출하여 학습하는 방법을 제안하고, 학습된 모델을 통해 트리플을 입력으로 하여 자연어 문장을 생성한다. 부족한 트리플과 문장 쌍 데이터를 대체하기 위해 핵심어 시퀀스를 추출하는 모듈을 사용해 핵심어 시퀀스와 문장 쌍 데이터를 생성하였고, 순환 신경망 기반의 인코더 - 디코더 모델을 사용해 자연어 문장을 생성하였다. 실험 결과, 핵심어 시퀀스와 문장 쌍 데이터를 이용해 학습된 모델을 이용해 트리플에서 자연어 문장 생성이 원활히 가능하며, 부족한 트리플과 문장 쌍 데이터를 대체하는데 효과적임을 밝혔다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.71-76
/
2022
목적 지향 대화 시스템은 사용자가 원하는 목적을 달성하기 위해 사용하는 시스템으로 일상 대화와 다르게 시스템이 정보를 명확히 전달하는 것이 중요하다. 따라서 최근 연구에서 목적 지향 대화 시스템을 위한 자연어 생성 모델은 정해진 대화 정책에 따라 알맞은 응답을 생성할 수 있도록 의도와 슬롯 정보를 담은 대화 행위(Dialog Act)를 활용한다. 하지만 대화 행위는 생성하는 문장을 탁월하게 제어하는 반면에 대화의 흐름과 상황에 맞게 다양한 문장을 생성하기 어렵다는 문제점을 가지고 있다. 이러한 문제점을 해소하고자 본 논문에서는 목적에 부합하는 내용을 명확하게 자연어로 생성하기 위해 대화 행위를 사용하면서 동시에 일상 대화 생성 모델과 같이 문맥을 고려하여 대화 흐름에 어울리는 자연스러운 문장을 생성할 수 있는 문맥 기반의 제어 가능한 자연어 생성 모델을 제안한다. 실험에서는 KoGPT2 사전 학습 모델과 한국어 대화 데이터셋을 사용하였으며 실험을 통해 대화 행위 기반의 자연어 생성 모델과 본 연구에서 제안한 문맥 기반의 제어 가능한 자연어 생성 모델을 비교하였다. 결과적으로 대화 행위를 단독으로 학습한 모델보다 일정 문맥을 함께 학습한 모델이 유의미한 BLEU 점수 향상을 보인다는 점을 확인하였다.
Major difficulties in the style selection,which guarantees the synthesis of good-styled natural expressions under the PIOVT MT system, are an absence of surface-level extra-information in the languageinde-pendent intermediate representation and the language-specific style of expressions due to cultural differences.This paper describes an attempt on the style selection with capabilities of guaranteeing more natural Korean expressions,which includes pragmatic and stylistic decision on target voice genertaion under heavy passive constraints,stylistic changes of sentence-structures,and meaning-supplementation of function words with content words.
Kim, DongYonug;Jeon, SangHoon;Ryu, MinSoo;Kim, Huy Kang
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.2
/
pp.417-437
/
2022
The quality of the fuzzing seed file is one of the important factors to discover vulnerabilities faster. Although the prior seed generation paradigm, using dynamic taint analysis and symbolic execution techniques, enhanced fuzzing efficiency, the yare not extensively applied owing to their high complexity and need for expertise. This study proposed the DDRFuzz system, which creates seed files based on sequence-to-sequence models. We evaluated DDRFuzz on five open-source applications that used multimedia input files. Following experimental results, DDRFuzz showed the best performance compared with the state-of-the-art studies in terms of fuzzing efficiency.
Kim, Jae-Kyung;Sohn, Won-Sung;Lim, Soon-Bum;Choy, Yoon-Chul
Journal of Korea Multimedia Society
/
v.11
no.1
/
pp.61-75
/
2008
A script language, which represents and controls avatar behaviors in a natural language style, is especially remarkable, because it can provide a fast and easy way to develop an animation scenario script. However, the studies that consider avatar behavior interactions with various virtual objects and intuitive interface techniques to design scenario script have been lack. Therefore, we proposed a context-based avatar-object behavior model and layered script language. The model defines context-based elements to solve ambiguity problems that occur in abstract behavior interface and it provides user interface to control avatar in the object-based approach. Also, the proposed avatar behavior script language consisted of a layered structure that represents domain user interface, motion sequence, and implement environment information at each level. Using the proposed methods, the user can conveniently and quickly design an avatar-object behavior scenario script.
Kim Yu Rim;Park Jeong In;Park Dong Hyun;Kang Sung Woo
Journal of Korean Society for Quality Management
/
v.52
no.3
/
pp.479-493
/
2024
Purpose: The deterioration in the quality of failure history data due to differences in interpretation of failures among workers at power plants and the lack of consistency in the way failures are recorded negatively impacts the efficient operation of power plants. The purpose of this study is to propose a system that classifies power generation facilities failures consistently based on the failure history text data created by the workers. Methods: This study utilizes data collected from three coal unloaders operated by Korea Midland Power Co., LTD, from 2012 to 2023. It classifies failures based on the results of Soft Voting, which incorporates the prediction probabilities derived from applying the predict_proba technique to four machine learning models: Random Forest, Logistic Regression, XGBoost, and SVM, along with scores obtained by constructing word dictionaries for each type of failure using LIME, one of the XAI (Explainable Artificial Intelligence) methods. Through this, failure classification system is proposed to improve the quality of power generation facilities failure history data. Results: The results of this study are as follows. When the power generation facilities failure classification system was applied to the failure history data of Continuous Ship Unloader, XGBoost showed the best performance with a Macro_F1 Score of 93%. When the system proposed in this study was applied, there was an increase of up to 0.17 in the Macro_F1 Score for Logistic Regression compared to when the model was applied alone. All four models used in this study, when the system was applied, showed equal or higher values in Accuracy and Macro_F1 Score than the single model alone. Conclusion: This study propose a failure classification system for power generation facilities to improve the quality of failure history data. This will contribute to cost reduction and stability of power generation facilities, as well as further improvement of power plant operation efficiency and stability.
Since robots have been used widely recently, research about human-robot communication is in process actively. Typically, natural language processing or gesture generation have been applied to human-robot interaction. However, existing methods for communication among robot and human have their limits in performing only static communication, thus the method for more natural and realistic interaction is required. In this paper, an emotional gesture based dialogue management system is proposed for sophisticated human-robot communication. The proposed system performs communication by using the Bayesian networks and pattern matching, and generates emotional gestures of robots in real-time while the user communicates with the robot. Through emotional gestures robot can communicate the user more efficiently also realistically. We used behavior networks as the gesture generation method to deal with dialogue situations which change dynamically. Finally, we designed a usability test to confirm the usefulness of the proposed system by comparing with the existing dialogue system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.