• Title/Summary/Keyword: natural guide star

Search Result 3, Processing Time 0.019 seconds

Performance Prediction of a Laser-guide Star Adaptive Optics System for a 1.6 m Telescope

  • Lee, Jun Ho;Lee, Sang Eun;Kong, Young Jun
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.269-279
    • /
    • 2018
  • We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. This paper first reviews atmospheric seeing conditions measured over a year in 2014~2015 at the Bohyun Observatory, South Korea, which corresponds to an area from 11.6 to 21.6 cm within 95% probability with regard to the Fried parameter of 880 nm at a telescope pupil plane. We then derive principal seeing conditions such as the Fried parameter and Greenwood frequency for eight astronomical spectral bands (V/R/I/J/H/K/L/M centered at 0.55, 0.64, 0.79, 1.22, 1.65, 2.20, 3.55, and $4.77{\mu}m$). Then we propose an AO system with a laser guide star for the 1.6 m telescope based on the seeing conditions. The proposed AO system consists of a fast tip/tilt secondary mirror, a $17{\times}17$ deformable mirror, a $16{\times}16$ Shack-Hartmann sensor, and a sodium laser guide star (589.2 nm). The high order AO system is close-looped with 2 KHz sampling frequency while the tip/tilt mirror is independently close-looped with 63 Hz sampling frequency. The AO system has three operational concepts: 1) bright target observation with its own wavefront sensing, 2) less bright star observation with wavefront sensing from another bright natural guide star (NGS), and 3) faint target observation with tip/tilt sensing from a bright natural guide star and wavefront sensing from a laser guide star. We name these three concepts 'None', 'NGS only', and 'LGS + NGS', respectively. Following a thorough investigation into the error sources of the AO system, we predict the root mean square (RMS) wavefront error of the system and its corresponding Strehl ratio over nine analysis cases over the worst ($2{\sigma}$) seeing conditions. From the analysis, we expect Strehl ratio >0.3 in most seeing conditions with guide stars.

Development of Adaptive Optics System for the Geochang 100 cm Telescope

  • Hyung-Chul Lim;Francis Bennet;Sung-Yeol Yu;Ian Price;Ki-Pyoung Sung;Mansoo Choi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.185-198
    • /
    • 2024
  • Korea Astronomy and Space science Institute (KASI) partnered with the Australian National University (ANU) to develop the adaptive optics (AO) system at the Geochang observatory with a 100 cm optical telescope for multiple applications, including space geodesy, space situational awareness and Korean space missions. The AO system is designed to get high resolution images of space objects with lower magnitude than 10 by using themselves as a natural guide star, and achieve a Strehl ratio larger than 20% in the environment of good seeing with a fried parameter of 12-15 cm. It will provide the imaging of space objects up to 1,000 km as well as its information including size, shape and orientation to improve its orbit prediction precision for collision avoidance between active satellites and space debris. In this paper, we address not only the design of AO system, but also analyze the images of stellar objects. It is also demonstrated that the AO System is achievable to a near diffraction limited full width at half maximum (FWHM) by analyzing stellar images.

An Agro-ecological Land Suitability Analysis Using GIS For Oil Palm Plantation in Southern Thailand

  • Dansagoonpon, Sutat;Tripathi, Nitin K;Borne, Frederic;Clemente, Roberto S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.970-972
    • /
    • 2003
  • Due to rapid increase in the demand of Natural Rubber (NR) few years ago, NR price sore very higher. The rubber plantation in Thailand expanded very fast to non traditional areas with the result Thai become the biggest NR exporting country in the world. However, the average yield is still lower compared to experimental yield of RRIT (Rubber Research Institute of Thailand) or just 60 % (RRIT, 1998). This is due to many of new rubber planting areas, which are not suitable. The Thai Ministry of Agriculture and Cooperatives thus has set 'The complete cycle development strategies for natural rubber' in the medium-term measures by reducing the rubber planting areas by 300,000 rai (1 rai = 0.16ha) through replanting with oil palm. The aim of this study is to find out land having lowest potential for rubber production (R3) but highest for oil palm production (P1). Find areas which are unsuitable for rubber and can be replaced by oil palm in order to get a better agricultural production. The study was applied upon Krabi province, Thailand. Crops requirement, degree of limitation to crops growth, climatic data, crops yield, soil map, topographic map etc., were used to evaluate land potential for both rubber and oil palm production according to FAO framework (Sys, 1992). An Agro-ecological suitability map for rubber and oil palm were produced. This was done by mean of GIS. The database was generated and guide map for the decision makers in view of suitable crop substitution was prepared.

  • PDF