• Title/Summary/Keyword: natural fungicide

Search Result 61, Processing Time 0.035 seconds

First Report of Pyrenophora tritici-repentis in Wheat (Triticum aestivum L.) in Korea and in vitro Selection of an Effective Fungicide

  • Min-Hye Jeong;Eu Ddeum Choi;Seol-Hwa Jang;Sang-Min Kim;Sook-Young Park
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.277-286
    • /
    • 2023
  • Tan spot, caused by Pyrenophora tritici-repentis, is a major foliar disease in wheat worldwide. In April 2021, tan spot symptoms were observed in a commercial wheat field in Suncheon, Jeonnam Province, Korea, with over 5% of the wheat leaves exhibiting symptoms. These symptoms included oval-shaped tan necrosis surrounded by a bright halo. The three representative isolates exhibited irregular mycelial growth on V8-potato dextrose agar and produced pseudothecia. Based on the concatenated sequence datasets of four multi-genes, including the internal transcribed spacer, large subunit ribosomal RNA, glyceraldehyde-3-phosphate dehydrogenase, and RNA polymerase II second-largest subunit genes, phylogenetic analysis revealed that these three isolates clustered in the same clade as P. tritici-repentis. Results of pathogenicity test indicated that the initial symptoms appeared 5 days post-inoculation (dpi), with typical tan spot symptoms developing at 7 dpi. The pathogen was successfully re-isolated from the symptomatic tissues, thus fulfilling Koch's postulates. Furthermore, we selected three fungicides that effectively inhibited the mycelial growth of P. tritici-repentis by more than 90% in vitro. To the best of our knowledge, this is the first report of tan spot disease in wheat in Korea.

A Case Study for Intergrated Pest Management of Frankliniella occidentalis and Aphis gossypii by Simultaneously Using Orius laevigatus and Aphidius colemani with Azoxystrobin in Cucumber Plants (시설오이에서 azoxystrobin, 미끌애꽃노린재, 콜레마니진디벌을 이용한 꽃노랑총채벌레와 목화진딧물 종합관리 사례)

  • Choi, Yong-Seok;Whang, In-Su;Han, Ik-Soo;Kim, Young-Chil;Choe, Gwang-Ryul
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.379-386
    • /
    • 2013
  • Aphidius colemani and Orius laevigatus aree natural enemies of the control cotton aphid and western flower thrips, which are the major pests of cucumber plants. We evaluated the low toxicity of 47 fungicides against A. colemani and O. laevigatus, and we investigated the simultaneous effect of the natural enemies with fungicide of low toxicity on the pests. The toxicity of DBEDC, hexaconazole, pyraclostrobin, tribasic copper sulfate, triflumizole, chlorothalonil, flusilazole, folpet, carbendazim+diethofencarb, cymoxanil+fenamidone and trifloxystrobin to A. colemani mummies was more than 50% and to O. laevigatus was low toxic. Among the fungicides with low toxicity, azoxystrobin 20% WP was selected because it could be used simultaneously with A. colemani and O. laevigatus and as a fungicide to control powdery mildew and downy mildew. In 2011, the densities of western flower thrips and cotton aphid increased rapidly in early-May in Gongju and Cheonan, Chungnam Province. When azoxystrobin was used at an interval of 10 days in spring, A. colemani and O. laevigatus were released at an interval of 7 days at the early occurrence of the pests. The natural enemies decreased the densities of the pests; the maximum number of A. colemani mummies was 18 per lower leaf, and the maximum number of O. laevigatus was 0.5 per flower. Azoxystrobin did not influence the densities of A. colemani and O. laevigatus. The results show that the selected fungicides can be used with A. colemani and O. laevigatus for the intergrated pest management of cotton aphid and western flower thrips in cucumber polyvinyl house cultivation.

Analysis of Residual Triflumizole, an Imidazole Fungicide, in Apples, Pears and Cucumbers Using High Performance Liquid Chromatography

  • Khay, Sathya;EI-Aty, A.M. Abd;Choi, Jeong-Heui;Shim, Jae-Han
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.87-91
    • /
    • 2008
  • The present study was conducted to monitor the level of triflumizole residues in fruits (apple and pear) and vegetable (cucumber) samples in order to assess risk posed by the presence of such residues to the consumer. Triflumizole was applied at a recommended dose rate to apple and pear pulps and to a cucumber sample. The samples were collected at harvesting time following several treatments (three and/or four treatments). Triflumizole was extracted with methanol and re-extracted into dichloromethane. The presence of triflumizole was determined by HPLC with UV detection at 238 nm following the cleanup of the extract by open preparative chromatographic column with Florisil. The versatility of this method was evidenced by its excellent linearity (> 0.999) in the concentration range between 0.2 and 4.0 mg/kg. The mean recoveries evaluated from the untreated samples spiked at two different fortification levels. 0.1 and 0.4 mg/kg, and ranged from 87.5${\pm}$0.0 to 93.3${\pm}$2.6 for the tested fruits and vegetable, respectively, and the repeatability (as relative standard deviation) from three repetitive determinations of recoveries were no larger than 6%. The calculated limit of detection was 0.02 mg/kg and the minimum detectable level of 4 ng for triflumizole was easily detected. When triflumizole was sprayed onto the apple trees three times at 50-40-30 and 40-30-21 days prior to harvesting and four times onto the pear trees at 40-30-21-14 days prior to harvesting, the mean residual amounts of 0.05 and 0.06 mg/kg for apples and pears, respectively, were not detected in all of the treatments. When the cucumber sample was fumigated four times at 7, 5, 3 and 1 day prior to harvesting, the mean residual amount was not detectable. Triflumizole can be used safely when sprayed (wettable powder, 30% active ingredient) and fumigated (10%) 4 times at 14 and 1 day prior to harvesting to protect the fruits and vegetable, respectively.

Epidemiological Investigations to Optimize the Management of Pepper Anthracnose

  • Ahn, Mun-Il;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.213-219
    • /
    • 2009
  • An understanding of anthracnose (Colletotrichum acutatum) infections, including the infection of flowers and latent infection early in the season, is necessary to achieve successful control by means of properly timed spraying with a curative fungicide. In the present study, latent anthracnose infection of chili was investigated under greenhouse and field conditions in 2007-2008. Flowers on greenhouse-grown seedlings were infected and 11% of the young fruits subsequently showed symptoms of anthracnose. Apparently healthy-looking green peppers obtained from unsprayed fields or an organic market also exhibited symptoms of anthracnose after 4 days of incubation under high moisture conditions at $25^{\circ}C$; less than 1% of the peppers were found to be latently infected. To determine the natural timing of infection in the field, 3,200 fruits were wrapped in paper bags and then selectively unwrapped and examined for signs of infection. Field experiments were conducted at Suwon (cvs. Yokkang, Manitta, Olympic) and Asan (cv. Chunhasangsa) in 2008. The 7- to 10-day wrapping periods were July 25-31, July 31-August 7, August 7-15, August 15-24, and August 24-September 3. The 1-to 2-month wrapping periods were from July 4, July 31, and August 15 until harvest (Sept. 3). The controls consisted of 1,712 field-grown non-wrapped fruits. The rates of infection on the various cultivars were Yokkang 55%, Manitta 37%, Olympic 55%, and Chunhasangsa 20%. A distinct period in which anthracnose infection suddenly increased could not be identified; however, attempts to guess the approximate timing of field infection showed that 0-39% of the plants had latent infections, while depending on the cultivar, 8-14% of the plants examined in August and 4-13.5% of the those examined during May-July showed symptoms of infection. Delaying fungicide spraying by 24 and 48 h after artificial infection decreased the rates of infection by 10% and 25-30%, respectively. Chemical control of anthracnose based on a forecasting model should be considered starting from the transplanting stage, with spraying within a day after warning and care being taken not to latently infect apparently healthy pepper fruits.

Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves

  • Liang, Shuang;Xu, Xuanwei;Lu, Zhongbin
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • Background: The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng (Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Methods: Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil $C_{18}$ column. Results: Chlorophyll and soluble protein contents were significantly (p = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and $O_2^-$ contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. Conclusion: This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

Biological activity of Ethaboxam: the first Korean fungicide

  • Kim, Dal-Soo;Chun, Sam-Jae
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.36-38
    • /
    • 2004
  • Ethaboxam is a new fungicidal active ingredient that inhibits growth of plant pathogens specifically belonging to Oomycetes with protective, curative, systemic and translaminar activity in plants. Modes of action studies revealed that ethaboxam simultaneously inhibits cytoskeleton formation and mitochondrial respiration of Phytophthora infestans at low concentrations. There have been no indications of resistance development when tested for baseline resistance monitoring to 261 isolates of P. infestans in Korea and Europe and 150 populations of Plasmopara viticola populations in Europe for 3 years since 2000. In a selective study with vine trees artificially inoculated with P. viticola repeatedly for 10 generations in greenhouse, there have been no changes in sensitivity to ethaboxam among four natural populations of P. viticola. Furthermore, ethamoxam has not shown any cross resistance with azoxystrobin, mefenoxam, dimethomorph and cymoxanil. Based on the study results from modes of action and resistance development, ethaboxam appears to be unlikely to develop resistance in field applications.

  • PDF

Developmental Abnormality in Agricultural Region and Toxicity of the Fungicide Benomyl on Korea salamander, Hynobius leechii (한국산 도롱뇽(Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성효과)

  • Choi, Yeoung-Ju;Yoon, Chun-Sik;Park, Joo-Hung;Jin, Jung-Hyo;Cheong, Seon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.198-212
    • /
    • 2002
  • A numerical variation and abnormalities were studied on egg bags and embryos of Korean salamander, Hynobius leechii from agricultural habitat. The teratogenic and toxic effects of fungicide benomyl were also investigated with early embryos from non-agricultural habitat. We collected 144 egg bags from agricultural region, and 3418 of early embryos were contained. The lengths of egg bags were varied from 10 to 23 cm and the most frequent length was 19 cm. The number of embryos was varied from 7 to 43, and the most frequent range was 22 to 26. Spontaneous abnormalities were occurred in 406 embryos among 116 egg bags, and 24 kinds of external abnormalities were found. Individuals showing severe external defect were histologically studied and they showed optic dyspalsia, thyroid carcinoma, somatic muscular dysplasia, partial biaxial structure, decrease of red blood cells in the heart, cephalic degeneration and intestinal dysplasia. 385 embryos from non-agricultural region were exposed to 200 nM${\sim}$ 1 ${\mu}$M of benomyl at blastula or gastrula for 12 days. All embryo were dead in the concentration of 1 ${\mu}$M (LD$_{100}$) and 75% of embryos were dead in 800nM of benomyl. Speciflc effect due to benomyl was acrania or cephalic dysplasia and this restult suggests that the benomyl inhibit stongly to the development of neural tissue. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of the movement of neural crest cells.

Control of Powdery and Downy Mildews of Cucumber by Using Cooking Oils and Yolk Mixture

  • Jee, Hyeong-Jin;Shim, Chang-Ki;Ryu, Kyung-Yul;Park, Jong-Ho;Lee, Byung-Mo;Choi, Du-Hoe;Ryu, Gab-Hee
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.280-285
    • /
    • 2009
  • Powdery and downy mildews caused by Sphaerotheca fusca and Pseudoperonospora cubensis are the most common and serious diseases of cucumber worldwide. In spite of the introduction of highly effective systemic fungicides, control of these diseases remains elusive. Hence, this study aimed to develop an alternative method to chemicals in controlling the diseases by using different types of cooking oil. Egg yolk, which contains a natural emulsifier, lecithin, was selected as a surfactant to emulsify the oils. Among the different cooking oils used, soybean, canola (rape seed), safflower, sunflower, olive, and corn oils showed over 95% control values against powdery mildew of cucumber in a greenhouse test. In particular, 0.3% canola oil emulsified with 0.08% yolk (1 yolk and 60 ml canola in 20 l spray) was found to be the most effective. The treatment resulted in 98.9% and 96.3% control efficacies on powdery and downy mildews, respectively, of cucumber in the field. Canola oil exhibited direct and systemic effect, wherein powdery mildew of cucumber was suppressed only on treated leaves but not on non-treated leaves in a plant, while mycelia and conidia of the pathogen were severely distorted or destroyed by the treatment. The prospect of using the canola oil and yolk mixture as a natural fungicide is highly promising because of its effectiveness, availability, low cost, simple preparation, and safety to humans and the environment. The use of the canola oil and yolk mixture is expected to be an effective fungicide for use in organic farming and home gardening.

Effect of Some Variation Factors on Dissipation of Tebuconazole in Grape (포도 중 Tebuconazole의 잔류성에 미치는 몇 가지 변동요인의 영향)

  • Han, Seong-Soo;Lo, Seog-Cho;Ma, Sang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.142-147
    • /
    • 2004
  • Dissipation pattern of tebuconazole was evaluated by establishing application methods of the fungicide, paper-bagging of grape during growth and washing of grape after harvest. Application times increased from three to five resulted in high levels of residues in grape. Tebuconazole in grapes was present in different residual patterns with periods after final treatment ranging from 7 to 25 days. Significant differences in the residual patterns were also found when tebuconazole was treated during three different application periods, possibly due to meteorological condition and/or grape growth during each period. At the range from 2.5 g to 7.5 g of grape granules, residues were higher in small-sized grape than in big-sized grape and were mostly distributed on the peel of the grapes. Paper-bagging was a critical factor for reducing the fungicide residue on the peel. flesh of bagged and no-bagged grape had very low level of residues, 0.01 mg/kg and 0.05 mg/kg, respectively. Residues on grape was effectively eliminated with the washing methods suggested, a consecutive sinking-washing system Using of detergent solution during washing showed maximum residue reduction from grape. The washing methods showed effective action on the removal of lower content providing complete elimination, or almost, of the residues.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.