• Title/Summary/Keyword: natural flow

Search Result 2,467, Processing Time 0.036 seconds

Experimental Study on Rayleigh-Benard-Marangoni Natural Convection using IR Camera (열화상카메라를 이용한 Rayleigh-Benard-Marangoni 자연대류 실험 연구)

  • Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Rayleigh-Benard-Marangoni (RBM) convection have been artificially made for application of various engineering fields. For a relatively larger circular container, natural convection experiments were carried out to reveal and show the flow characteristics with engine oil (SAE30) using IR camera. IR camera has captured the temperature distribution on the free surface. From these experiments, it was confirmed that it was possible to quantitatively analyze the occurrence characteristics of RBM flow clearly from the thermal images taken with IR camera. As the aspect ratio increased, both the number of internal and external cavities increased. And found that the criteria of RBM flow generation proposed through previous experiments performed for small-sized containers are also very effective with the results on larger circular container.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

A Study on the Recovery of Electricity Energy by Employing Double Turbo-Expander Pressure Reduction System to the Seasonal Variation of Natural Gas Flow Rates (천연가스의 계절별 변동유량을 고려한 이중터보팽창기 감압시스템을 이용한 전기에너지회수에 관한 연구)

  • Park, Cheol-Woo;Yoo, Han Bit;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.74-81
    • /
    • 2019
  • Expansion turbine system to recover the electricity energy from natural gas transmission stations is a well-known technique. The turbo-expander efficiency depends on the ratio of the natural gas flow rates to the design flow rate of the turbo-expander. However, if there is a big difference of the natural gas flow rate through the pressure letdown station because of seasonal supply pattern, that is, high flow rate in winter while low flow rate in summer, single turbo-expander system is not so efficient as to recover the pressurized energy from the low flow-rate natural gas. Therefore, we have proposed a new concept of double turbo-expander system: one is a big capacity and the other a small capacity. Here we have theoretically computed the electric powers at the pressure reduction from 18.5 bar to 7.5 bar depending on the inlet conditions of temperature and flow rate. The calculated electricity generation has been increased by 30% from 12.4 MW in a single turbo expander to 16.1 MW in the proposed double turbo-expander system when a minimal design efficiency of 0.72 is applied.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Analysis of Natural Convection Core Configuration at Boundary Layer Flow Regime in a Low Aspect Ratio Rectangular Enclosure (낮은 종횡비의 직각밀폐용기내의 자연대류 경계층 흐름영역에서의 코어형상에 관한 근사해석)

  • 이진호;김무현;전주명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.349-358
    • /
    • 1988
  • Natural convection velocity and temperature profiles are obtained approximately in the core at boundary layer flow regime for varying Prandtl number in a low aspect ratio rectangular Enclosure. Analysis is based on the formally obtained core flow equations using the multiple scales method. Results show good agreement with the existing works for $P_{r}$ ~ 1. No comparison, however, is possible yet for $P_{r}$ >> 1 and $P_{r}$ < 1 due to the lack of available date. It is shown here that boundary layer flow regimes are governed by two parameters, A $R_{a}$$^{1}$4/ and A( $P_{r}$ $R_{a}$)$^{1}$4 for $P_{R}$.geq. 1 and $P_{r}$ < 1 respectively.ely.ively.ely.y.

ANALYSIS ON FLOW FIELDS IN AIRFLOW PATH OF CONCRETE DRY STORAGE CASK USING FLUENT CODE (FLUENT를 활용한 콘크리트 건식 저장용기 공기유로 내부 유동장 해석)

  • Kang, G.U.;Kim, H.J.;Cho, C.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 2016
  • This study investigated natural convection flow behavior in airflow path designed in concrete dry storage cask to remove the decay heat from spent nuclear fuels. Using FLUENT 16.1 code, thermal analysis for natural convection was carried out for three dimensional, 1/4 symmetry model under the normal condition that inlet ducts are 100% open. The maximum temperatures on other components except the fuel regions were satisfied with allowable values suggested in nuclear regulation-1536. From velocity and temperature distributions along the flow direction, the flow behavior in horizontal duct of air inlet and outlet duct, annular flow-path and bent pipe was delineated in detail. Theses results will be used as the theoretical background for the composing of airflow path for the designing of passive heat removal system by understanding the flow phenomena in airflow path.

Design and Wind Tunnel Tests of a Natural Laminar Flow Airfoil (자연층류 익형 설계 및 시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul;Kim, Eung-Tae;Lee, Dae-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.354-357
    • /
    • 2008
  • Drag reduction is one of main concerns for commercial aircraft companies than ever because fuel price has been tripled in ten years. In this research, Natural Laminar Flow airfoil is designed and tested to reduce drag at cruise condition, $c_l$=0.3, Re=3.4${\times}$10$^6$ and M=0.6. NLF airfoil is characterized by delayed transition from laminar to turbulent flow, which comes from maintaining favorable pressure gradient to downstream. Transition is predicted by solving Boundary Layer equations in viscous boundary layer and by solving Euler Equation outside the boundary layer. Once boundary layer thickness and momentum thickness are obtained, $e^N$-method is used for transition point prediction. As results, KARI's NLF airfoil is designed and shows better characteristics than NLF-0115. The characteristics are tested and verified at low Reynolds numbers, but at high Reynolds numbers, laminar flow characteristics are not obtainable because of fully turbulent flow over airfoil surfaces. Precious experiences, however, relating NLF airfoil design, subsonic and transonic tests are acquired.

  • PDF

Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace (유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

Hydrodynamic Analysis at Nakdong River Confluences (낙동강 주요 합류부에서의 동역학적 수리해석)

  • Han, Kun Yeun;Kim, Ji Sung;Yang, Seung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.908-911
    • /
    • 2004
  • The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers. In this study, two dimensional unite element model, SMS, is used to simulate a complex flow along with the sediment movements in the natural river. The RMA-2 model embeded in SMS is used to simulate flow phenomena and SED-2D model is employed to simulate sediment transport. The model is applied to the confluence zone of the Gam River and mouth of Nakdong River. For model calibration, the result of the unsteady flow analysis is compared with the Typhoon 'Rusa' data. In addition, the runoff analysis was conducted for the determination of the project flood and the flood forecasting. The simulation results presented the characteristics of two dimensional flow with velocity vector and flow depth. The sediment transport characteristics are shown in terms of sediment concentration as well as bed elevation change. Accordingly, the SMS model in this study turned out to be very effective tool for the simulation of the hydrodynamic characteristics under the various flow conditions and corresponding sediment transports in natural rivers.

  • PDF

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.