• Title/Summary/Keyword: natural ecosystems

Search Result 370, Processing Time 0.027 seconds

Introduction of Alien Plants on the Fill and Cut Slopes of the Road Construction in South Korea (우리나라에서 도로 공사장의 성토사면과 절토사면에서 외래식물의 도입)

  • Chu, Yeounsu;Jin, Seung-nam;Son, Deokjoo;Park, Shinyeong;Cho, Hyungjin;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.191-199
    • /
    • 2019
  • Road development is considered an important factor in invasion and dispersion of ailen plants by damaging the natural ecosystems and connecting the detached landscapes into long tubular structures. In this study, vegetation survey was carried out according to the topographical characteristics of cut slope, fill slope, and flat land at the construction site in order to understand the effect of road developemt on the change of the floristic composition of ailen plants. Road developement projects caused a lot of changes in annual and biennial alien plants because of continuous disturbances. Changes in species composition of alien plants decreased in the cut slope. On the other hand, the ailen palnts of the fill slope increased. The increase or decrease alien plants on flat land were identified depending on where it occurred, and no major trend was found. The cause of these change was driven by unintentionally introduced alien plants. In particular, the cut slope with a high occurence of unintentional ailen plants should not be used as a source of high-risk alien plants such as ecosystem disturbances. Since the transplanted species were intentionally planted by the landscape plan, it was possible to identify colonies from early stages and spread to the nearby flat land. Therefore, in order to minimize the impact of road slope vegetation on the surrounding ecosystem during and after road construction, it is suggested to plant high viability plants in the landscape design during the environmental impact assessment consultation.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF

Modeling Virtual Ecosystems that Consist of Artificial Organisms and Their Environment (인공생명체와 그들을 둘러싸는 환경으로 구성 되어지는 가상생태계 모델링)

  • Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2010
  • This paper introduces the concept of a virtual ecosystem and reports the following three mathematical approaches that could be widely used to construct such an ecosystem, along with examples: (1) a molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm growth. The ecosystem considered in this study consists of artificial organisms and their environment. Each organism in the ecosystem is an agent that interacts autonomously with the dynamic environment, including the other organisms within it. The three types of model were successful to account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual ecosystem needs to take many ecological variables into account. However, doing so is likely to introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem's dynamics. Nonetheless, the development of a virtual ecosystem is important, because it can provide possible explanations for various phenomena such as environmental disturbances and disasters, and can also give insights into ecological functions from an individual to a community level from a synthetic viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper also briefly discusses the application of the second model to the simulation of a termite ecosystem and the influence of climate change on the termite ecosystem.

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

The Application of Island Biogeography and Habitat Fragmentation Theory to the Conservation of Protected Areas in Korea (우리나라 보호지역의 보존에 대한 도서생물지리학과 서식처 분획화 이론의 적용)

  • 김용식;마이클모운더
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.1
    • /
    • pp.12-24
    • /
    • 1992
  • The application of island biogepgraphy and habitat fragmentation theory to protected area management in Korea is discussed. The accelerating destruction and degradation of natural habitats, with the associated erosion of biodiversity, demands and urgent response and a critical review of attitudes to protected area management. The flora of Korea will continue to change in both distribution and status in response to these man induced changes. The conservation and management of ecosystems, because of the variety of threats and the varying levels of biodiversity to be conserved, requires an integrated approach. Such an approach assesses the variety of threats, prevalent and potential, and responds with a strategy combining habitat, species and population management. The application of island biogeography, habitat fragmentation and edge effects theory to conservation strategies in Korea will assist in the understanding of the dynamic relationships between the isolation. degradation and fragmentation of surviving habitat patches. The application of such approaches is discussed with recommendations made for the adoption of an increasingly scientific approach to plant conservation based upon a knowledge of the conservation status and distribution characteristics of the Korean flora. Such data combined with demographic studies on topics such as Minimum Viable Population Size will allow an integrated approach to plant and habitat conservation to progress.

  • PDF

Characteristics of Vegetation Structure in Chamaecyparis Obtusa Stands (편백림의 식생구조 특성 분석)

  • Park, Seok-Gon;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.907-916
    • /
    • 2015
  • The purpose of this study was to identify characteristics of vegetation structure, vegetation succession, and species diversity of artificially planted Chamaecyparis obtusa (CO) stands. The study was carried out by performing vegetation survey for eight CO stands located in Jeollanam-do Province, Korea. Analysis on vegetation classification and ordinations of the stands was conducted using the data from the vegetation survey, and as a result, the stands were classified into five types of communities. Community I showed a considerably lower index of species diversity when compared to other communities because the canopy of the dominant CO was so highly dense that the low-height vegetation was not able to develop or the low-height vegetation almost disappeared due to elimination of weed trees. Meanwhile, the Community II - IV had relatively higher indices of species diversity because various native tree species mixed with the low-height vegetation and competed with each other in the understory and shrub layers to some degree of stability or in their early stage of vegetation development. Community V, lastly, showed higher use intensity as a recreational forest, thus developing simpler vegetation structure on account of artificial intervention. There was positive correlation between photosynthetically active radiation entering the forest floor, number of observed species and index of species diversity. Such characteristics of vegetation structure in CO stands are closely associated with forest management and prescription for planting reforestation, thinning, and brush cutting in the past. There was a slight difference in vegetation structure and species diversity by communities, based on rotation time of the vegetational succession, process of disturbance frequency and disturbance, development, and maturity by planting CO stands. However, when compared to natural forests, the CO stands showed simpler vegetation structure. Because artificial forests are vulnerable in ecosystem service with lower species diversity, a drive for ecological management is needed for such forests to change into healthy ecosystems that can display functions of public benefit.

Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju (충주지역(忠州地域)의 신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 지상부(地上部) 및 토양(土壤) 중(中) 탄소고정(炭素固定)에 관(關)한 연구(硏究))

  • Park, Gwan-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • This study has been carried out to estimate aboveground and soil carbon contents in an average 39-year-old Quercus mongolica and 40-year-old Quercus variabilis stands in Chungju, Chungbuk. Ten sample trees were cut in each forest and soil samples were collected. Aboveground carbon content was estimated by the equation model $Wt=aD^b$ where Wt is oven-dry weight in kg and D is DBH in cm. Total aboveground carbon content was 48.85tonC/ha in Quercus mongolica stand and 57.49tonC/ha in Quercus variabilis stand. The proportion of each tree component to total aboveground carbon content was high in order of bolewood, branches, bolebark, and leaves in the two forests. Aboveground net primary production was estimated at 5.88tonC/ha in Quercus mongolica stand and 5.12tonC/ha in Quercus variabilis stand. Soil carbon content was 67.0tonC/ha in Quercus mongolica stand, 67.8tonC/ha in Quercus variabilis stand, and 54.7tonC/ha in Pinus densiflora stand. There was no significant difference in soil carbon content among the three forests.

  • PDF

Effects of Elevated $CO_2$ Concentration and Temperature on Growth Response of Quercus acutissima and Q. variabilis (지구온난화에 따른 상수리나무와 굴참나무의 생육반응에 관한 연구)

  • Jeong, Jung-Kyu;Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.648-656
    • /
    • 2010
  • Global warming brings changes of natural ecosystems and affects on the plant growth response. Quercus acutissima and Q. variabilis are taxonomically similar and dominant native species in deciduous forests in South Korea. In order to understand the growth response of Q. acutissima and Q. variabilis to global warming condition, we cultivated the seedling of the two oak species in ambient condition(control) and treatment with elevated $CO_2$(700~800ppm) and increased air temperature(approximately $3^{\circ}C$ above than control). Then we measured the growth characteristic among them and analyzed the relationship between two species using PCA ordination. Stem length and total plant weight of Q. acutissima were significantly affected by elevated $CO_2$ concentration and increased air temperature. Stem diameter and weight of Q. variabilis were significantly affected by elevated $CO_2$ concentration and increased air temperature(p<0.05). The variation characteristics of Q. acutissima were changed more than Q. variabilis by elevated $CO_2$ concentration and increased air temperature. These result suggested that Q. acutissima was more sensitive to global warming situation than Q. variabilis in central region of Korea. PCA ordination showed that two species were arranged by two distinct groups based on 10 characters by elevated $CO_2$ and increased air temperature.

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.