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ABSTRACT

This paper introduces the concept of a virtual ecosystem and reports the following three mathematical

approaches that could be widely used to construct such an ecosystem, along with examples: (1) a

molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model

approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm

growth. The ecosystem considered in this study consists of artificial organisms and their environment.

Each organism in the ecosystem is an agent that interacts autonomously with the dynamic

environment, including the other organisms within it. The three types of model were successful to

account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual

ecosystem needs to take many ecological variables into account. However, doing so is likely to

introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem’s dynamics.

Nonetheless, the development of a virtual ecosystem is important, because it can provide possible

explanations for various phenomena such as environmental disturbances and disasters, and can also

give insights into ecological functions from an individual to a community level from a synthetic

viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper

also briefly discusses the application of the second model to the simulation of a termite ecosystem and

the influence of climate change on the termite ecosystem.
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I. INTRODUCTION

An ecosystem is a dynamic complex of plants, ani-

mals, microorganisms, and nonliving organisms in the

environment, all interacting as a single functional unit.

All ecological factors are directly or indirectly linked to

and influence one another. Thus, any disturbance to a

single element in an ecosystem can cause a damage in

various extent to the overall system. For example, the

build-up of carbon dioxide in the atmosphere resulted

in global warming, which in turn led to a decrease in

the global krill biomass (Baes et al., 1977; Emanuel et

al., 1980; Gardner et al., 1980; Schlamadinger et al.,

1995). In the next century, krill biomass is expected to
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decrease by 95% throughout the Scotia Sea (Murphy et

al., 2007). Since krill is a key component of the South-

ern Ocean food chain, its decrease threatens to destabi-

lize the entire aquatic ecosystem (Schmidt et al., 2003).

The climate change has both positive and negative

impacts on sustainable agriculture of a country, where

sustainable agriculture affect agricultural productivity,

food security, technology, and environment which have

different components, with varying priorities in global

and regional levels (Adams et al., 1990; Kane et al.,

1992). 

Theoretical biologists and ecologists have attempted

to develop ecological models to account for the rela-

tionship between such ecological variables and the sta-

bility of an ecosystem. These models have helped us to

better understand the major dynamics of ecosystems

and to predict their behavior (in general terms, or in

response to particular changes). Most ecosystem mod-

els, however, have had a limited capacity to reflect

actual ecosystems synthetically because they are too

simplified and localized due to the extreme difficulty of

quantifying ecological factors, excessive computational

costs, and uncertainties associated with obscure ele-

ments (Hurtt and Pacala, 1995).

The recent increase in less expensive computational

power now enables us to successfully overcome these

problems by considering many more factors that char-

acterize actual ecosystems in multiple hierarchical lev-

els, from that of an individual element to an entire

population. Such an individual-based model that can

deal with multiple levels is known as a virtual ecosys-

tem (Peacor et al., 2007). To construct a virtual ecosys-

tem, various approaches must be adopted in order to

efficiently reduce the huge computational cost of run-

ning an algorithm on that ecosystem. 

The present study introduces three main approaches

along with examples, which could be used to build a

virtual ecosystem: (1) a molecular dynamics simulation

approach for animal flocking behavior (Lee et al., 2006),

(2) a stochastic lattice model approach for termite terri-

torial behavior (Lee et al., 2007), and (3) a rule-based cel-

lular automata approach for biofilm growth (Lee et al.,

2004). With an example of the application of the ter-

mite territory model to the challenge of climate change,

we briefly described how a virtual termite ecosystem

responds to such change. The purpose of this study is

to introduce the concept of a virtual ecosystem and

show how the virtual ecosystem can be linked to real

corresponding system. 

II. MATHEMATICAL APPROACHES 

TO A VIRTUAL ECOSYSTEM

2.1. Molecular dynamics simulation approach

for flocking model

The unique behavior of a large number of dynamic

interacting individuals, known as “flocking”, has attracted

many researchers from diverse fields of scientific and

engineering disciplines (Desai et al., 2002). In the field,

flocking behavior is frequently observed in animal pop-

ulations and is often maintained with no apparent

supervisors and no external stimuli (Videler, 1993).

Well-known examples are found in prey populations

such as large schools of fish (Huth and Wissel, 1994)

or gatherings of birds (Maldonado-Coelho and Marini,

2004). Several hypotheses have been proposed for the

reasons behind this aggregation of organisms: reduced

risk of capture by predators, higher mating efficiency,

easier search for food, efficient learning of external

stimuli, and reduced overall aggression (Cashing and

Harden-Jones, 1968; Zheng et al.,2005; Viscido et al.,

2001; Parrish et al., 2002; Adioui et al., 2003).

This flocking behavior can be simulated by the appli-

cation of the following three rules (Reynolds, 1987):

(1) maintain a certain minimum distance between

nearby individuals, (2) steer them in the approximate

direction toward which the rest of the individuals are

heading, and (3) move individuals toward the average

position of all the individuals nearby. 

These three rules can be written in Newton’s second

law (Lee et al., JTB, 2006; Lee, 2007) as follows: 

(1)

where mi, xi, and vi are respectively the mass, position,

and velocity of the i-th individual. (q=align, att, rep,

and fric) represents various forces that represent the

interactive behavior among individuals (align: align-

ment, att: attraction, rep: repulsion, and fric: friction). 

The force of alignment was given as 

(2)

where xi and xj indicate the i-th and the j-th individual

position,  is the velocity of the j-th individ-

ual, and g is the strength of the force of alignment. The

g contributes to making each member of the flock to

move in the same direction. The value of g was set

appropriately at 0.5. 

The force of attraction between individuals was
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described as a decreasing exponential function. When

the i-th individual was located in the attractive field of

the j-th individual, the i-th individual was assumed to

move towards the j-th individual. The force of attrac-

tion was described as below:

(3)

where , and catt is a constant. The

strength of the force of attraction was characterized by

a length scale latt in a decreasing exponential function. 

The force of repulsion between individuals was addi-

tionally expressed by a decreasing exponential func-

tion. When the i-th individual was in the field of

repulsion of the j-th individual, the i-th individual

moved away from the j-th individual to avoid a colli-

sion, depending upon the distance between the two

individuals. The force of repulsion was described as

follows: 

(4)

where  and Crep is a constant. Simi-

lar to the case of attraction, lrep was used to characterize

forces that repel one another. 

To prevent individuals from moving too quickly, the

friction force with coefficient ã was set to be propor-

tional to the current speed of an individual:

(5)

When we introduced 200 particles (individuals) into

two-dimensional space, the individuals flocked together

as time passed in accordance with the three forces (see

Fig. 1). 

2.2. Stochastic lattice model approach to ter-

mite territory model

Subterranean termites usually tunnel underground to

do their foraging. Their tunnel galleries reach lengths

ranging from tens to hundreds of meters long (King

and Spink, 1975). These tunnel galleries determine

their territory. Thus, the size and shape of a given ter-

ritory reflects a compromise between the foraging effi-

ciency of the termite colony and other biological and/or

ecological constraints, such as the number of active for-

agers, soil hardness, and food availability (Lee and Su,
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Fig. 1. Photographs showing the process of alignment of individuals in a flock. The arrows attached to the circles indicate

velocity.
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2009a). Thus, an understanding of territorial behavior

is essential to our understanding of how a termite col-

ony is organized and its efficiency at foraging. 

A stochastic lattice model approach was adopted for

the simulation of termite territorial behavior because

this model has been recognized as a powerful approach

to the investigation of the effect of neighborhood inter-

actions on the dynamics of not only plants and forests,

but also of animal and human societies (Nakamaru,

2006). 

Termite territory was simulated on a two-dimensional

lattice space composed of cells of dimensions L × L,

where L (= 200) is the system size. Each cell was in

one of three possible states: occupied by active termites

(active termite cell), occupied by inactive termites

(inactive termite cell), or empty (empty cell).

In the model, the landscape was produced by allot-

ting randomly generated values, ranging from 0.0 to

1.0, to each cell. These values represented the degree of

ease in the construction of tunnels. Higher values cor-

responded to soil conditions that are conducive to eas-

ier tunneling. Thus, this value can be interpreted as the

transition probability, Ptrans, that an active termite cell

will grow into its neighboring cell. When an active ter-

mite cell is surrounded by cells with low value of Ptrans,

the active termite cell might stop growing and become

an inactive termite cell. In field, the inactive termite

cell can be corresponded to termite tunnel tip that

encounters adverse environmental condition such as

soil with very high moisture and rocks.

The model also incorporates the seasonal cycles of

summer and winter. For the sake of theoretical simpli-

fication, it was assumed that the seasons change

according to a step function with two time scales: sum-

mer time and winter time. The simulated territory grew

in the summer and shrank in the winter. In order to fit

the time scale, the experimental data were compared to

those reported by Bess (1970) and Li et al. (1979) in

the simulation; it was found that an iteration time of T

= 36 corresponds to the duration of summer in New

Orleans, Louisiana (Lee et al., 2007). Because there

was no interplay among cells, which would have required

a time of interaction, the processes in the winter season

were fulfilled in one iteration time (T=1). At the begin-

ning of the simulation run, N active termite cells, which

represented the number of founding pairs, were ran-

domly introduced into the lattice space.

The rules that determine the cell growth from one

generation to the next in the framework of the territory

dynamics were as follows:

2.2.1. Rules of growth and cell-cell interaction

(summer season)

• When an active termite cell met an empty cell with

a higher Ptrans value, the active termite cell could grow

into the empty cell more easily than it could into a cell

with a lower Ptrans value (Fig. 2(a)). In this figure, the

most active termite cells had the highest probability of

growing into the top right site. 

• When two active termite cells met, they could not

share the same site (Fig. 2(b)).

• When more than one active termite cell competed with

another for occupation of an empty site, the occupant of

the site was determined by a coin toss (Fig. 2(c)).

Fig. 2. Possible configurations in which each active termite

cell can encounter an obstacle or another active termite cell.

The arrows indicate the direction of growth of each active

termite cell. A solid circle represents an obstacle. A square

with termites is an active termite cell.

Fig. 3. Multiplication process (state-changing rule) of each

active termite cell (a) surrounded by 7 obstacle cells, or (b)

towards one of its unoccupied next-neighbor sites during

one discrete time step t→ t+1. 
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2.2.2. Rules of State-Change (from an active

termite cell to an inactive termite cell)

• When a single active termite cell was surrounded by

7 inactive cells, the active termite cell was changed to

an inactive termite cell (Fig. 3(a)).

• When a single active termite cell was surrounded by

less than 7 inactive cells, the termite cell could either

grow into the empty cells or stop probabilistically.

Once it stopped, it was changed into an inactive termite

cell (Fig. 3(b)).

2.2.3. Rules of Shrinkage (winter season)

• Messenger and Su (2005) reported that C. formosa-

nus colony territories contracted almost 80% during the

winter, as compared to the summer. Based on this

observation, active/inactive termite cells were removed

according to distance, with the cells furthest from the

seed cell removed first, until about 80% of the cells

remained (Fig. 4(a)). 

• After the territory size shrank, several of the

remaining inactivated cells were chosen by a probabil-

ity function on the basis of their distance from the seed

cell; these inactivated cells were changed into active

termite cells to initiate territorial growth (Fig. 4(b)).

The preferential weighting of distant cells as starting

sites for new tunnel growth stems from the assumption

that growth is most likely at the colony’s periphery. 

Fig. 5 shows the typical patterns of a simulated ter-

mite territory at a steady state, which was reached after

a sufficiently long time (t=20). The color white repre-

sents termite cells and territory, and black indicates

empty space. Territorial competition problems were

dealt by Lee et al (2009b). 

2.3. Rule-based cellular automata approach for

biofilm model

Biofilms are microbial assemblages that occupy a

spatial interface by creating a chemically distinct

microenvironment. Biofilms can be readily established

at any interface of a living organism (e.g., dental plaque

on teeth), non-living organisms (e.g., soil, rocks in

riverbeds, marine and freshwater sediment, etc.), and

non-natural products (e.g., filters, ship hulls, pipelines,

bioreactors, etc.) (Stoodley et al., 1997).

Each bacterium grows and dies according to its sur-

rounding condition. These kinds of organisms can be

easily described using a cellular automata (CA) approach.

Cellular automata are the simplest models of spatially

distributed processes. They consist of an array of cells,

each of which is allowed to be in one or in several

states. At the same time, each cell looks to its neigh-

bors to see what states they are in. Using the informa-

tion received, each cell applies a simple rule to

determine what state it should change to. Following

Lee et al. (2004), a biofilm model consisting of two

bacterial species - toxin-sensitive and toxin-producing

bacteria - was constructed. 

Fig. 4. Process of territory shrinkage during winter season:

(a) territory size decreases to ~80%. Termite cells are

sequentially removed according to the rule, “the furthest

cells are removed first” (b) after shrinkage, new active ter-

mite cells are chosen to provoke territory growth. 

Fig. 5. Typical territory patterns formed at steady state, which are reached after a sufficiently long time (t=20). 
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The model was described in a two-dimensional sys-

tem with an L × L (L=200) site grid, where L is the

system size. Updating is carried out synchronously

for individual organisms of bacteria, nutrients, and

toxicants. Each bacterial organism, nutrient, and tox-

icant can move only from one site to another per time

step. Each interior site (i, j) (where i = 2, ..., n 1 and

j = 2, .., n 1) has 8 immediate neighbors (i 1, j 1), (i

1, j), (i 1, j + 1), (i, j1), (i, j+1), (i+1, j1), (i+1, j), and

(i+1, j+1). In order to determine the growth of bio-

film from the previous step, we set the following

rules: 

2.3.1. States

• Each site can be occupied by any one of the six pos-

sible states: a toxin-producing organism, a toxin-sensi-

tive organism, a nutrient, a toxicant, one toxicant and

one nutrient (at the same site), or one toxicant and one

toxin-producing organism (at the same site). 

2.3.2. Bacterial growth 

• Cell division occurs in toxin-sensitive (or toxin-pro-

ducing) organisms with a certain probability (in this

case p = 1.0) when their neighboring sites are occupied

by at least one nutrient (Fig. 6(a), (b)). 

• When more than one toxin-producing (and/or

toxin-sensitive) organism compete with one another

for a nutrient at the same time, the occupant of the

nutrient is determined randomly (i.e., coin toss) (Fig.

6(c), (d), (e)). 

2.3.3. Toxic effect 

• When one or more than one toxin-sensitive organ-

ism is present in the immediately- neighboring sites of

a toxicant, death of the toxin-sensitive bacteria occurs

due to diffusion of the toxicant (Fig. 6(f), (g)). 

• When more than one toxicant is present in the

neighboring sites of a toxin-sensitive organism, the

coin-toss rule is applied to determine which toxicant

kills the toxin-sensitive organism (Fig. 6(h)). 

• The site of a toxin-producing organism can be

shared with a toxicant (Fig. 6(i), (j)). In this case, there

is no interaction between the toxicant and the toxin-

producing organism. 

• When a toxin-producing organism is located in the

immediately-neighboring site of a nutrient, the uptake

of the nutrient is carried out by the progeny of the

toxin-producing organism. A toxicant is immediately

produced by the progeny of the toxin-producing organ-

ism at one of its neighboring sites (Fig. 7(a)). 

• When toxicants and nutrients are located at the

neighboring sites of a toxin-sensitive organism, cell divi-

sion occurs before the toxicants diffuse. Immediately

after the reproduction of progeny, the toxicant either

diffuses to an empty site (or to the site occupied by a

toxin-producing organism) or kills the toxin-sensitive

organism (or its “progeny”) (Fig. 7(b)). 

• When an immediately-neighboring site of a toxin-

sensitive organism site is shared by a nutrient and a

toxicant at the same time, cell division occurs before

diffusion of the toxicant (Fig. 7(c)). The simulations are

Fig. 6. All possible configurations in which each bacterial organism encounters a toxicant or a nutrient. The arrows indicate

either the direction of growth of each specimen or the direction of movement of each nutrient and toxicant. The large solid

octagon, large octagon, small solid octagon, and small octagon represent toxin-producing specimens, toxin-sensitive speci-

mens, toxicants, and nutrients, respectively.
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performed on an L = 200 square grid. Nutrients are ini-

tially generated based on random distribution. When all

of the nutrient particles are consumed, the simulation is

over. Periodic boundary conditions are used to mini-

mize the edge effects.

Fig. 8 shows two typical simulated pattern of biofilm

growth under the same initial conditions. Before simu-

lation run, ten toxin-sensitive and ten toxin-producing

bacteria were randomly distributed. The different initial

locations of the bacteria caused different morphological

patterns. The green and the blue colors indicate toxin-

sensitive and toxin-producing bacteria. The red parti-

cles represent the toxicants. In the space, the nutrient

particles move randomly, but they were not represented

in different colors in order to make contrasting colors

of the species visually distinct.

III. DISCUSSION AND SUMMARY

This paper has introduced three mathematical approaches

that could be widely used to construct virtual ecosys-

tems that consist of artificial organisms along with their

surroundings, such as landscape. First, a molecular

dynamics simulation approach was introduced to build

Fig. 7. Multiplication process of each specimen and occupation of the sites of one of the unoccupied neighbors during one iter-

ation time step t ≥ t + 1.

Fig. 8. Typical patterns of biofilm growth. The base was separately inoculated with 20 toxin-sensitive bacteria and 10 toxin-

producing bacteria in a repetitive sequence.
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an animal flocking model. Second, a stochastic lattice

model approach was applied in order to generate a

model of termite territorial dynamics. Lastly, a rule-

based cellular automata approach was used in order to

construct a biofilm model. 

Along with the increase in computational power, vir-

tual ecosystems have attracted considerable attention as

a new ecological model that can provide possible

explanations for complex and varied ecological phe-

nomena at different levels, from that of individuals to

that of an entire community. One of the competitive

advantages of a virtual ecosystem is that because it is

individual-based, it can easily make connections between

lower levels and higher levels, for example, how an

environmental disturbance (higher level) influences an

individual animal (lower level). 

One of the main environmental issues of recent times

is that of climate extremes, such as unseasonably high

temperatures, caused by global warming (Baes et al.,

1977; Emanuel et al., 1980; Gardner et al., 1980;

Schlamadinger et al., 1995). Climate change strongly

affects both the stability and resilience of an ecosystem

(Dukes and Mooney, 1999; Dixon et al., 2003; Men-

delsohn et al., 2006). For this reason, many researchers

have studied the effects of climate change on ecosys-

tems (Pastor and Post, 1988; Davis, 1990; Bradley et

al., 2005; Koneswaran and Nierenberg, 2008). As an

example of this, this paper has shown how the model of

a termite colony’s territory responds to the effects of

climate change. In the field, termite colonies grow dur-

ing the summer and shrink during winter (Messenger

and Su, 2005). In addition, it has been observed that

increases in temperature increase the percentage of

remaining termite cells (Messenger and Su, 2005).

Based on these observations, we can assume that cli-

mate change can be described in terms of two vari-

ables: the period of the summer season, T, and the

percentage of remaining termite cells, σ, after shrink-

age. By simply introducing the seasonal cycle as a

function of T and σ into the termite model, we can eas-

ily link the phenomena of climate change with the ter-

ritorial behavior of a termite colony. Fig. 9 shows the

typical pattern of 30 termite colony territories at a

steady state, which means that the territory formations

have changed little after a sufficiently long simulation

time. 

Overall, the development of virtual ecosystems is

important, in that it can provide a foundation for future

empirical research on the effects of various environ-

mental factors on natural ecosystems. I am constructing

a rice paddy virtual ecosystem on a lattice space in

order to explore the effects of climate change on a rice

Fig. 9. Typical patterns formed at the steady state (t=20) for T = 10, 20, 30, 40, and 50, where ó = 10, 30, and 50. Each color

indicates each territory.



130 Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 2

paddy ecosystem. This model adopted the stochastic

lattice model approach because many variables, describ-

ing plants and insects living in a rice paddy, can be rel-

atively easily considered in the approach. I believe that

the model can be a powerful tool to predict the stability

and the resilience of the ecosystem in response to the

environmental change. The study will be appeared else-

where in the near future. 

적 요

본 논문은 가상 생태계의 개념과 가상생태계를 구현

하는데 중요하게 사용되어 질 수 있는 세 가지 수학

적-물리학적 접근법을 응용 예와 함께 소개 하였다.

가상생태계란 개체기반 모델로써 인공생명체들이 가상

환경하에서 스스로 행동하면서 살아가는 것을 모사하

는 컴퓨터 내에 구현된 생태계를 의미한다. 생물의 무

리행동을 전산 모사하는 분자동역학모사 접근법과, 흰

개미 영토를 전산 모사하는 확률적 격자모델 접근법,

그리고 생물막 성장을 전산 모사하는 규칙기반-세포자

동자모델 접근법을 소개하였다. 실 생태계와의 유사성

을 높이기 위해 가상생태계 모델은 많은 변수들을 사

용하여야 하지만, 기술적인 측면에서 이러한 변수들을

모두 결정하기는 어렵다. 그러나 현재의 눈부신 컴퓨터

성능향상에 힘입어 많은 부분이 극복 되어 지고 있다.

특히, 가상생태계는 기후변화와 같은 환경재앙을 포함

하여 많은 복잡한 생태학적 현상을 개체수준의 낮은

계층에서부터 생물집단 또는 외부 환경수준과 같은 높

은 계층까지를 통합적으로 이해하는데 큰 도움을 줄

수 있을 것이다. 마지막으로 논문에서는 높은 수준의

계층인 기후변화가 낮은 수준의 계층인 개체기반의 흰

개미 생태계에 미치는 복잡한 문제를 어떻게 다룰 수

있는지에 대한 예를 들고 간략하게 논의하였다. 
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