• Title/Summary/Keyword: natural coating solution

Search Result 32, Processing Time 0.035 seconds

Optimization of Processing Conditions of Chinese Smoke-cured Bacon (Larou) with a New Natural Coating Solution during Storage Period

  • Liu, Na;Zhu, Qiujin;Zeng, Xuefeng;Yang, Bowen;Liang, Meilian;Deng, Li;He, Laping;Liang, Cai;Zhang, Ruping;Zhou, Juan
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.636-652
    • /
    • 2018
  • The study aims to determine the optimum sterilization rate and water activity of Chinese traditional smoke-cured bacon product (Larou) in the preservation with natural coating solution. With the response surface methodology (RSM), we analyzed 3 factors of processing conditions (the concentration of lysozyme, concentration of sodium alginate, and concentration of chitosan) and 2 response factors (sterilization rate and water activity). Sterilization rate and water activity of Larou were largely affected by the concentration of lysozyme, concentration of sodium alginate, and concentration of chitosan. The final optimum concentrations of lysozyme, sodium alginate, and chitosan were 0.09, 1.40, and 1.60% and realized the high sterilization rate. Water activity of sliced Larou was significantly correlated with the sterilization rate. Low-field nuclear magnetic resonance analysis verified the optimum processing conditions. The coating resulted in 99.69% rate of reducing bacteria after 30-day storage. The data of the total number of colony, peroxidation value, moisture content, pH, and sensory evaluation provided the theoretical basis for extending the shelf life of Chinese traditional smoke-cured bacon product (Larou) with natural coating solution.

Effectiveness of Antimicrobial Starch Coating Containing Thyme Oil against Salmonella, Listeria, Campylobacter, and Pseudomonas on Chicken Breast Meat

  • Goswami, Namita;Han, Jung-Hoon;Holley, Richard A.
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.425-431
    • /
    • 2009
  • Antimicrobial coating on chicken carcasses may reduce the effects of cross-contamination and improve product shelf-life and safety. Thyme oil was mixed at 0.5%(v/v) with a pre-gelatinized pea starch coating solution. The coating solution was spread on chicken breast meat after inoculation with selected spoilage and pathogenic bacteria. After inoculation, the chicken meats were packaged in plastic bags and stored at $4^{\circ}C$. During 12 day storage, total aerobic bacteria, lactic acid bacteria, and inoculated organisms were counted at 4 day intervals. Thyme oil treatments reduced the viability of Salmonella as well as the growth of Listeria and Pseudomonas by 2 log CFU/g, and appeared to eliminate inoculated Campylobacter during storage. The addition of thyme oil increased the viscosity of the pre-gelatinized pea starch solution. The results suggested that thyme oil inclusion in an edible starch coating may be a satisfactory delivery system to enhance the safety of processed fresh meat.

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface (코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선)

  • Kim, Dae Hwan;Kum, Chang Hun
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

Development of Control Technology for Acid Mine Drainage by Coating on the Surface of Pyrite using Chemicals (산성광산배수의 발생저감을 위한 황철석 표면의 피막형성 기술개발)

  • Ji, Min-Kyu;Yoon, Hyun-Sik;Ji, Eung-Do;Lee, Woo-Ram;Park, Young-Tae;Yang, Jung-Seok;Jeon, Byong-Hun;Shim, Yon-Sik;Kang, Man-Hee;Choi, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • Acid mine drainage occurs when sulfide minerals are exposed to an oxidizing environment. The objective of this study was to inhibit the oxidation of pyrite by applying various coating agent such as $KH_2PO_4$, MgO and $KMnO_4$ over its surface as an oxidation inhibitors. Experiments were conducted for 8 days to test the feasibility of oxidation inhibitors. The optimal condition of coating agent for standard pyrite and IK mine was the combination of 0.01M $KH_2PO_4$, 0.01M NaOAc and 0.01M NaClO. Otherwise, for YD mine the combination of 0.01M $KMnO_4$, 0.01M NaOAc and 0.01M NaClO. The $SO_4^{2-}$ reduction efficiency of pyrite, IK and YD mine samples was 70, 92 and 84%, respectively. For 8 days, no significant increase of $SO_4^{2-}$ from pyrite sample coated with inhibitor was observed. The pH of solution remains in between 4 to 6 for the reaction conditions.

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Properties Analysis of Environment Friendly Coating Films Formed by Using Electrodeposition Principle on Seawater (해수환경중 전착원리에 의해 형성시킨 환경친화적인 코팅막의 특성 분석)

  • Baek, S.M.;Lee, C.S.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • Cathodic protection is one of the successful ways to prevent corrosion of steel structures in marine environments. The unique feature of cathodic protection in seawater is the formation of calcareous deposits on cathodic metal surface. The formation principles of calcareous deposit seawater had been known for a long time. That is, cathodic reduction reactions associated with cathodic protection in seawater generate $OH^-$ at the metal surface in accordance with the formular ; 1/2 $O_2$ + $H_2O$ + $2e^-$ $2OH^-$ and $2H_2O$ + $2e^-$ ${\rightarrow}$ $H_2$ + $2OH^-$. These reactions increase the pH at the metal / seawater interface. The high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the formular ; $Mg^{2+}$ + $2(OH)^-$ ${\rightarrow}$ $Mg(OH)_2$ and $Ca^{2+}$ + $HCO_3^-$ + $OH^-$ ${\rightarrow}$ $H_2O$ + $CaCO_3$. These are typically the main compounds in calcareous deposits. It obviously has several advantages compared to the conventional coatings, since the environment-friendly calcareous deposit coating is formed by the elements($Mg^{2+}$, $Ca^{2+}$) naturally present in seawater. In this study, environmental friendly calcareous deposit films were prepared on steel plates by electro plating technic in natural seawater. The influence of current density on composition ratio, structure and morphology of the coated films were investigated by scanning electron microscopy formation process of calcareous deposits films in natural seawater. And we confirmed the properties of all the films can be improved greatly by controlling the material structure and morphology with effective use of the electroplating method in natural seawater.

  • PDF

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

Natural Dyeing of Chitosan Nonwoven Fabric (키토산 부직포의 천연염색)

  • Kim Jong-Jun;Kwon Min-Soo;Jeon Dong-Won
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.6 s.53
    • /
    • pp.999-1009
    • /
    • 2004
  • Chitin is a derived product from the shell of shrimp or crab. Chitosan, a deacetylated product of chitin, has widely been used in the biomedical sector, food industry, and textile industry. Chitosan exhibits fiber-forming property under certain conditions. Nonwoven fabrics made of chitosan fibers may have diverse applications in the industry. Previous studies have revealed that the dye uptake properties of natural dyestuffs improved by the chitosan pretreatment on the fabric specimens. In this case, fabric specimen is coated with acidic salt form of chitosan, which is different from the pure chitosan, since the coating process employes coating with the acidic solution of the chitosan and subesquent drying. In this study, chitosan nonwoven fabric samples were prepared from chitosan sample having deacetylation degree of $100\%$ and molecular weight of 650,000. Chitosan nonwoven fabrics maintain the form of $-NH_2$ end-group. These in turn exhibit higher dye uptake ability than the fabrics coated with chitosan acidic solutions do.

  • PDF

The Effect of Collagen Coating in Crystallized Hydroxyapatite Scaffold (콜라겐 코팅된 결정화 하이드록시아파타이트 담체를 이용한 골아세포의 성장)

  • Kim, Tae-Gon;Park, Won-Yong;Kim, Yong-Ha;Kim, Youn-Jung;Choi, Sik-Young
    • Archives of Plastic Surgery
    • /
    • v.36 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • Purpose: Hydroxyapatite(HA) has been widely used due to its chemical similarity to bone and good biocompatibility. HA is composed of macropores and micropores. Too much irregularities of the micropores are ineffective against the adhesion and proliferation of osteoblast. Many efforts have been tried to overcome these drawbacks. HA crystal coating on the irregular surface of HA scaffold, crystallized HA, is one of the method to improve cell adhesion. Meanwhile, the collagen has been incorporated with HA to create composite scaffold that chemically resembles the natural extracellular matrix components of bone. The authors proposed to examine the effect of collagen - coated crystallized HA on the adhesion and proliferation of osteoblast. Method: HA powder containing $10{\mu}m$ pore size was manufactured as 1 cm pellet size. For the making crystallized HA, 0.1 M EDTA solution was used to dissolve HA powder and heated $100^{\circ}C$ for 48 hours. Next, the crystallized HA pellets were coated with collagen (0.1, 0.5, and 1%). The osteoblasts were seeded into HA pellets and incubated for the various times (1, 5, and 9 days). After the indicating days, methylthiazol tetrazolium (MTT) assay was performed for cell proliferation and alkaline phosphatase (ALP) activty was measured for bone formation. Result: In SEM study, the surface of crystallized HA pellet was more regular than HA pellet. MTT assay showed that the proliferation of osteoblasts increased in a collagen dose - dependent and time - dependent manner and had a maximum effect at 1% collagen concentration. ALP activity also increased in a collagen dose - dependent manner and had a highest effect at 1% collagen concentration. Conclusion: These data showed that crystallization and collagen coating of HA was effective for osteoblast proliferation and ALP activity. Therefore, our results suggest that crystallized - HA scaffold with collagen coating is may be a good strategy for tissue engineering application for bone formation.