DOI QR코드

DOI QR Code

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface

코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선

  • Received : 2018.11.30
  • Accepted : 2018.12.21
  • Published : 2018.12.30

Abstract

Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Wang, H., Naghavi, M., Allen, C., Barber, R. M., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coates, M. M., Coggeshall, M., Dandona, L., Dicker, D. J., Erskine, H. E., Haagsma, J. A., Fitzmaurice, C., Foreman, K., Forouzanfar, M. H., Fraser, M. S., Fullman, N., et al.: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459-1544. https://doi.org/10.1016/S0140-6736(16)31012-1
  2. Mendis, S., Puska, P., and Norrving, B.: Global atlas on cardiovascular disease prevention and control; World Health Organization, Geneva, 2011.
  3. Colleran, R. and Kastrati, A.: Percutaneous coronary intervention: Balloons, stents and scaffolds. Clin. Res. Cardiol. 2018, 107, 55-63. https://doi.org/10.1007/s00392-018-1328-x
  4. Fischman, D. L., Leon, M. B., Baim, D. S., Schatz, R. A., Savage, M. P., Penn, I., Detre, K., Veltri, L., Ricci, D., and Nobuyoshi, M.: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 1994, 331, 496-501. https://doi.org/10.1056/NEJM199408253310802
  5. Stone, G. W., Ellis, S. G., Cox, D. A., Hermiller, J., O'shaughnessy, C., Mann, J. T., Turco, M., Caputo, R., Bergin, P., and Greenberg, J.: A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 2004, 350, 221-231. https://doi.org/10.1056/NEJMoa032441
  6. Moses, J. W., Leon, M. B., Popma, J. J., Fitzgerald, P. J., Holmes, D. R., O'shaughnessy, C., Caputo, R. P., Kereiakes, D. J., Williams, D. O., and Teirstein, P. S.: Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 2003, 349, 1315-1323. https://doi.org/10.1056/NEJMoa035071
  7. Joner, M., Finn, A. V, Farb, A., Mont, E. K., Kolodgie, F. D., Ladich, E., Kutys, R., Skorija, K., Gold, H. K., and Virmani, R.: Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 2006, 48, 193-202. https://doi.org/10.1016/j.jacc.2006.03.042
  8. Kotani, J., Awata, M., Nanto, S., Uematsu, M., Oshima, F., Minamiguchi, H., Mintz, G. S., and Nagata, S.: Incomplete neointimal coverage of sirolimus-eluting stents: Angioscopic findings. J. Am. Coll. Cardiol. 2006, 47, 2108-2111. https://doi.org/10.1016/j.jacc.2005.11.092
  9. Jose, M. and Windecker, S.: Very late stent thrombosis with newer drug-eluting stents, no longer an issue? Rev. Esp. Cardiol. 2012, 65, 595-598. https://doi.org/10.1016/j.recesp.2012.01.017
  10. Cutlip, D. E., Baim, D. S., Ho, K. K. L., Popma, J. J., Lansky, A. J., Cohen, D. J., Carrozza Jr, J. P., Chauhan, M. S., Rodriguez, O., and Kuntz, R. E.: Stent thrombosis in the modern era: A pooled analysis of multicenter coronary stent clinical trials. Circulation 2001, 103, 1967-1971. https://doi.org/10.1161/01.CIR.103.15.1967
  11. Wang, G.-X., Deng, X.-Y., Tang, C.-J., Liu, L.-S., Xiao, L., Xiang, L.-H., Quan, X.-J., Legrand, A. P., and Guidoin, R.: The adhesive properties of endothelial cells on endovascular stent coated by substrates of poly-l-lysine and fibronectin. Artif. Cells, Blood Substitutes, Biotechnol. 2006, 34, 11-25. https://doi.org/10.1080/10731190500428283
  12. Jang, E.-J., Bae, I.-H., Park, D. S., Lee, S.-Y., Lim, K. S., Park, J.-K., Shim, J.-W., Sim, D. S., and Jeong, M. H.: Effect of a novel peptide, WKYMVm-and sirolimus-coated stent on reendothelialization and anti-restenosis. J. Mater. Sci. Mater. Med. 2015, 26, 251. https://doi.org/10.1007/s10856-015-5585-1
  13. Chang, H.-K., Kim, P.-H., Kim, D. W., Cho, H.-M., Jeong, M. J., Kim, D. H., Joung, Y. K., Lim, K. S., Kim, H. B., Lim, H. C., Han, D. K., Hong, Y. J., and Cho, J.-Y.: Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Exp. Mol. Med. 2018, 50, 114. https://doi.org/10.1038/s12276-018-0143-9
  14. Wawrzynska, M., Duda, M., Wysokinska, E., Strzadala, L., Bialy, D., Ulatowska-Jarza, A., Kalas, W., Kraszewski, S., Paslawski, R., Biernat, P., Paslawska, U., Zielonka, A., Podbielska, H., and Kopaczynska, M.: Functionalized CD133 antibody coated stent surface simultaneously promotes EPCs adhesion and inhibits smooth muscle cell proliferation - A novel approach to prevent in-stent restenosis. Colloids Surfaces B Biointerfaces 2018, 174, 587-597.
  15. Setchell, K. D., Rodrigues, C. M., Podda, M., and Crosignani, A.: Metabolism of orally administered tauroursodeoxycholic acid in patients with primary biliary cirrhosis. Gut 1996, 38, 439LP-446LP. https://doi.org/10.1136/gut.38.3.439
  16. Cho, J. G., Lee, J. H., Hong, S. H., Lee, H. N., Kim, C. M., Kim, S. Y., Yoon, K. J., Oh, B. J., Kim, J. H., Jung, S. Y., Asahara, T., Kwon, S.-M., and Park, S. G.: Tauroursodeoxycholic acid, a bile acid, promotes blood vessel repair by recruiting vasculogenic progenitor cells. Stem Cells 2014, 33, 792-805.
  17. Kim, S. Y., Kwon, Y.-W., Jung, I. L., Sung, J.-H., and Park, S. G.: Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKC$\alpha$-mediated MKP-1 induction. Cardiovasc. Res. 2011, 92, 307-316. https://doi.org/10.1093/cvr/cvr219
  18. Raman, A.: Discovery of Kerria lacca (Insecta: Hemiptera: Coccoidea), the lac insect, in India in the late 18th century. Curr. Sci. 2014, 106, 886.
  19. Pearnchob, N., Dashevsky, A., and Bodmeier, R.: Improvement in the disintegration of shellac-coated soft gelatin capsules in simulated intestinal fluid. J. Control Release 2004, 94, 313-321. https://doi.org/10.1016/j.jconrel.2003.10.004
  20. Jacoby, A., Morrison, K. A., Hooper, R. C., Asanbe, O., Joyce, J., Bleecker, R., Weinreb, R. H., Osoria, H. L., Mukherjee, S., and Spector, J. A.: Fabrication of capillary-like structures with Pluronic F127$^{(R)}$ and Kerria lacca resin (shellac) in biocompatible tissue-engineered constructs. J. Tissue Eng. Regen. Med. 2017, 11, 2388-2397. https://doi.org/10.1002/term.2138
  21. Kong, L., Amstad, E., Hai, M., Ke, X., Chen, D., Zhao, C.-X., and Weitz, D. A.: Biocompatible microcapsules with a water core templated from single emulsions. Chinese Chem. Lett. 2017, 28, 1897-1900. https://doi.org/10.1016/j.cclet.2017.07.017
  22. Seo, M. J., Lee, Y. S., Lee, J. W., An, H. J., Ryu, H. K., Kim, H. K., and Hong, S. H.: Comparative analysis of the physicochemical characteristics of bear, pig, and cow biles. Food Eng. Prog. 2016, 20, 349-356. https://doi.org/10.13050/foodengprog.2016.20.4.349
  23. Bose, S., Keller, S. S., Alstrom, T. S., Boisen, A., and Almdal, K.: Process optimization of ultrasonic spray coating of polymer films. Langmuir 2013, 29, 6911-6919. https://doi.org/10.1021/la4010246
  24. Xie, Y., Gao, S., and Eslamian, M.: Fundamental study on the effect of spray parameters on characteristics of P3HT: PCBM active layers made by spray coating. Coatings 2015, 5, 488-510. https://doi.org/10.3390/coatings5030488
  25. Fitzsimons, B. and Parry, T.: Fitz's Atlas of Coating Defects 2. MPI Group: Surrey, UK, 2011.