• 제목/요약/키워드: natural cheese production

검색결과 20건 처리시간 0.022초

Current status of global dairy goat production: an overview

  • Miller, Beth A.;Lu, Christopher D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8_spc호
    • /
    • pp.1219-1232
    • /
    • 2019
  • The global goat population continues to grow and is now over one billion. The number of goats raised primarily for milk production is also growing, due to expanding demand. Most of the world dairy goat production and consumption is in Asia, but a global view of the dairy goat sector reveals important lessons about building successful modern dairy goat industries. The most organized market for goat milk is found in Europe, especially in France. The European goat sector is specialized for milk production, mostly for industrial cheesemaking, while also supporting traditional on-farm manufacturing. Government involvement is significant in sanitary regulation, research, extension, support for local producer organizations, and markets, and ensures safety and quality. Nonetheless, producers are still vulnerable to market fluctuations. New dairy goat industries are developing in countries without a long goat milk tradition, such as China, the United States, and New Zealand, due to rising consumer demand, strong prices, and climate change. The mix of policies, management and markets varies widely, but regardless of the country, the dairy goat sector thrives when producers have access to markets, and the tools and skills to sustainably manage their livestock and natural resources. These are most readily achieved through strong and inclusive producer organizations, access to technical services, and policies that enable the poor and marginalized groups to benefit from increasing demand.

Perspective of Membrane Technology in Dairy Industry: A Review

  • Kumar, Pavan;Sharma, Neelesh;Ranjan, Rajeev;Kumar, Sunil;Bhat, Z.F.;Jeong, Dong Kee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권9호
    • /
    • pp.1347-1358
    • /
    • 2013
  • Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

Kluyveromyces marxianus와 젖산균의 혼합배양에 의한 치즈 유청의 알코올 발효 (Alcohol Fermentation of Cheese Whey by Kluyveromyces marxianus and Lactic Acid Bacteria)

  • 심영섭;김재원;윤성식
    • 한국식품과학회지
    • /
    • 제30권1호
    • /
    • pp.161-167
    • /
    • 1998
  • 치즈 제조시 생기는 부산물인 유청을 이용하여 알코올 발효 음료를 만들기 위해 유당을 이용하는 효모인 K. marxianus KCCM 32422와 유당을 이용하지 않는 S. cerevisiae KCCM 12028의 2종류의 효모 균주와 7균주의 젖산균을 혼합 배양하여 알코올 생성량 $CO_2\;gas$의 생산량, 적정산도의 변화, 그리고 관능적 특성을 조사하였다. K. marxianus KCCM 32422와 Lb. bulgaricus Lb-12를 혼합배양시에는 4일째 알코올 함량이 2.8%였으며, S. cerevisiae KCCM 12028과 Lb.bulgaricus Lb-12를 혼합배양시에는 4일째 알코올 함량이 0.2%였다. 효모를 첨가하는 최적시간은 K. marxianus KCCM 32422는 젖산균을 접종후 24시간에, S. cerevisiae KCCM 12028은 젖산균 접종후 16시간에 하는 것이 효과적이었다. K. marxianus KCCM 32422와 7균주의 젖산균을 혼합배양시에는 K. marxianus KCCM 32422와 L. lacis KCCM 32406가 배양 96시간에 알코올 2.3%, $CO_2\;gas$는 1.9%로 다른 젖산균에 비하여 알코올과 $CO_2\;gas$의 높은 생산량을 나타내었다. 배양 온도는 $37^{\circ}C$에서 하는 경우가 $20^{\circ}C,\;30^{\circ}C,\;42^{\circ}C$에서 발효시키는 것보다 높은 알코올과 $CO_2\;gas$생산량을 나타내었다. 전반적인 기호도는 L. lacits KCCM 32406가 신맛은 조금 강하고 쓴맛은 전혀 없으며 알코올 맛은 조금강하여 가장 적당하다고 평가되었다.

  • PDF

Bifidobacterial Growth Stimulation by Lactobacillus casei via Whey Fermentation

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • 제14권3호
    • /
    • pp.265-268
    • /
    • 2009
  • Three-hundred bacterial isolates from a natural cheese were screened for the production of bifidobacterial growth factor by whey fermentation. Based on this screen, two whey samples fermented by strains designated as CJNU 0421 and CJNU 0588 were found to effectively stimulate the growth of a bifidobacterial strain, Bifidobacterium longum FI10564, by 1.6$\sim$1.7 fold compared to a control, in which non-fermented whey medium was added. The two isolates were identified to be Lactobacillus casei (99% identity) by 16S rRNA gene sequencing and named Lactobacillus casei CJNU 0421 and CJNU 0588, respectively. The whey sample fermented by CJNU 0588 did not enhance the growth of other bacteria such as Escherichia coli and Listeria monocytogenes, suggesting that the whey fermentation metabolites from the isolate could be used for the selective stimulation of bifidobacteria.

기능성 유제품과 개선된 기능성 물질로서 미국에서 개발된 유청 단백질과 그 분획물 (U.S. Whey Proteins and New Fractions as Ingredients in Functional Dairy Products and Innovative Nutraceuticals)

  • Lagrange, V.
    • Journal of Dairy Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.106-118
    • /
    • 1998
  • 유청은 치즈제조시 부산물로 얻어지는 천연물이며, 새로운 기술발전에 따라 유청단백질의 농축물과 유청분획물들이 여러모로 이용 가능하게 되었고, 또한 여러 종류의 식품의 원료로 제공하게 되었다. 농축 유청단백질은 겔화, 유화성, 휩핑, 수분결합성, 지방대체성 등의 다양한 기능성을 함유하고 있다. 유청의 새로운 분획물인 알파락트알부민, 락토페린, 락토페록시다아제, 펩타이드 등은 이들의 생활성이나 건강향상성때문에 전세계적으로 관심이 높다. 이들 분획물에서 천연 항생물질, 천연 보존료 및 면역 향상 물질 등으로 새롭게 사용이 가능한 것으로 발견되었다. 기능성 식품산업의 성장에 힘입어 증가 추세에 있는 많은 제조업자들이 새로운 제품개발을 성공적으로 하는데 유청의 영양적, 기능적 조건들이 유리하다. 미국은 유청생산이 전세계에서 가장 큰 유일한 생산국이고 또한 수출국이다. 1997년에는 백만톤 이상의 유청제품들이 미국에서 제조되었다.

  • PDF

유산균의 곰팡이 억제 활성 (Inhibitory Activity of Lactic Acid Bacteria against Fungal Spoilage)

  • 설국환;유자연;윤정희;오미화;함준상
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권2호
    • /
    • pp.83-93
    • /
    • 2019
  • Food spoilage by fungi is responsible for considerable food waste and economical losses. Among the food products, fermented dairy products are susceptible to deterioration due to the growth of fungi, which are resistant to low pH and can proliferate at low storage temperatures. For controlling fungal growth in dairy products, potassium sorbate and natamycin are the main preservatives used, and natamycin is approved by most countries for use in cheese surface treatment. However, a strong societal demand for less processed and preservative-free food has emerged. In the dairy products, lactic acid bacteria (LAB) are naturally present or used as cultures and play a key role in the fermentation process. Fermentation is a natural preservation technique that improves food safety, nutritional value, and specific organoleptic features. Production of organic acids is one of the main features of the LAB used for outcompeting organisms that cause spoilage, although other mechanisms such as antifungal peptides obtained from the cleavage of food proteins and competition for nutrients also play a role. More studies for better understanding these mechanisms are required to increase antifungal LAB available in the market.

A New Synthetic Medium for Lactic Lactococci: Application to Marine lactic Acid Bacteria

  • KIM Joong K.;BAJPAI Rakesh K.
    • 한국수산과학회지
    • /
    • 제28권6호
    • /
    • pp.812-813
    • /
    • 1995
  • Lactococcal cells are nutritionally fastidious and thus, generally cultured either in milk or M17 medium (Terzaghi and Sandine, 1975). In this study, Lactococcus cremoris wild-type (KH) and its less­proteolytic mutant (KHA1) cells were grown on the M17 medium or with modified M17 medium by replicated parallel experiments. The modified M17 medium had the same composition as M17 medium, except that lactose was replaced by glucose. Analyses of culture-broth samples, in which the M17 and the modified M17 media were used, were conducted by high-performance liquid chromatography (HPLC). But, working with these media created noisy problems in analyses of samples. Therefore, a new semi-synthetic medium was developed on the basis of nutritional requirements (Morishita et al., 1981). The composition of the semi-synthetic medium determined on the basis of the nutritional requirements and the composition of milk, is presented in Table 1. The composition of M17 medium is also presented and compared in the table. L. cremoris KH and KHA1 cells were grown again on the new synthetic medium containing glucose or lactose. The broth samples were then drawn and analyzed by HPLC. Clearer separations of fermented products were achieved from the new medium than those with the M17 and the modified M17 media. In comparison with the M17 or the modified M17 media, growth on the new medium was good (Kim et al, 1993). Additional fermentations were also carried out at a controlled pH of 7.0, where enhanced growth of lactococcal cells was obtained. In the fermentations, samples were also analyzed for the concentrations of sugar and lactic acid. The results showed that the new synthetic medium was as good as or better than the M 17 and the modified M 17 media. This is because casein hydrolysate in the synthetic medium provided a ready supply of amino acids and peptides for L. cremoris KH and KHA1 cells. Lactic acid bacteria (LAB) including Lactococcal cells have been known to be an effective means of preserving foods, at the same time as giving particular tastes in fields of dairy products. LAB also have always occupied an important place in the technology of sea products, and marine LAB have known to be present in traditional fermented products (Ohhira et al, 1988). To apply the new synthetic medium to marine LAB, two different LAB were isolated from pickled anchovy and pollacks caviar and were grown on the new media in which various concentrations of NaCl $(3, 5, 7 and 10\%)$ added. They were also grown on the medium solution in natural seawater $(35\%o\;salinity)$ and on the solution of natural seawater itself, too. As seen in Fig. 1, Marine LAB were grown best on the synthetic medium solution in natural seawater and the higher concentrations of NaCl were added to the medium, the longer lag-phase of growth profile appeared. Marine LAB in natural seawater were not grown well. From these results, the synthetic medium seems good to cultivate cells which are essential to get salted fish aged. In this study, it showed that the new synthetic medium provided adequate nutrition for L. cremoris KH and KHA1 cells, which have been used as cheese starters (Stadhouders et al, 1988). Using this new medium, the acid production capability of starter cultures could be also measured quantitatively. Thus, this new medium was inferior to the M17 or the modified M17 medium in culturing the cheese starters and in measuring fermentation characteristics of the starter cells. Moreover, this new medium found to be good for selected and well-identified marine LAB which are used in rapid fermentations of low-salted fish.

  • PDF

Immunostimulatory effects of dairy probiotic strains Bifidobacterium animalis ssp. lactis HY8002 and Lactobacillus plantarum HY7717

  • Ju-Yeon, Kim;Joo Yun, Kim;Hyeonji, Kim;Eun Chae, Moon;Keon, Heo;Jae-Jung, Shim;Jung-Lyoul, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1117-1131
    • /
    • 2022
  • Previous studies reported that Bifidobacterium animalis ssp. lactis HY8002 (HY8002) improved intestinal integrity and had immunomodulatory effects. Lactobacillus plantarum HY7717 (HY7717) was screened in vitro from among 21 other lactic acid bacteria (LAB) and demonstrated nitric oxide (NO) production. The aims of this study were to investigate the individual and combined ex vivo and in vivo effects of LAB strains HY8002 and HY7717 at immunostimulating mice that have been challenged with an immunosuppressant drug. The combination of HY8002 and HY7717 increased the secretion of cytokines such as interferon (IFN)-γ, interleukin (IL)-12, and tumor necrosis factor (TNF)-α in splenocytes. In a cyclophosphamide (CTX)-induced immunosuppression model, administration of the foregoing LAB combination improved the splenic and hematological indices, activated natural killer (NK) cells, and up-regulated plasma immunoglobulins and cytokines. Moreover, this combination treatment increased Toll-like receptor 2 (TLR2) expression. The ability of the combination treatment to upregulate IFN-γ and TNF-α in the splenocytes was inhibited by anti-TLR2 antibody. Hence, the immune responses stimulated by the combination of HY8002 and HY7717 are associated with TLR2 activation. The preceding findings suggest that the combination of the HY8002 and HY7717 LAB strains could prove to be a beneficial and efficacious immunostimulant probiotic supplement. The combination of the two probiotic strains will be applied on the dairy foods including yogurt and cheese.

Probiotics를 이용한 새로운 건강 증진 기능성 유제품 개발에 관한 연구: 총설 (Development of New Functional Dairy Products Containing Probiotics for Improving Human Health: A Review)

  • 김동현;천정환;김현숙;김홍석;송광영;김수기;정동관;서건호
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.35-46
    • /
    • 2015
  • 최근 20년간 건강 및 질병 예방효과를 가진 식품에 대한 관심이 증가하고 있다. 오늘날 대다수의 노인들이 동물성 지방 과다 섭취로 인한 질환(예: 심혈관계 질병, 당뇨병)을 겪고 있으며, 이 질환으로 인한 세계 인구 사망률은 3번째로 높다. 최근 많은 사람들이 기능성 식품을 찾고 있으며, 기능성 식품은 모든 식품 부문, 그 중에서도 주로 낙농제품, 과자류, 청량음료, 제빵, 유아식 등의 부문에서 개발되고 있다. 식품 산업들이 새로운 식품분야에 도전함으로써 여러 가능성(예: 지방산 함유량의 재조리 또는 식이 섬유, 산화 방지제, probiotic 첨가를 통한 원료 및 가공물질의 성분 조절)을 시도해 볼 수 있게 되었다. 우유 및 유제품이 건강에 이로운 식품으로 인식되고 있으며, 우유에는 인체에 유익한 여러 가지의 생물적으로 활성화된 요소와 활성균이 함유되어 있다. 이 박테리아들은 우유에 존재하는 성분을 변형시킬 뿐만 아니라, 몇몇 심각한 질병을 완화시키며, 방부제 역할도 한다. 미생물의 상호 작용을 통해 발효된 유제품은 직접적으로 또는 발효과정중 생산된 비타민, 단백질, 펩타이드, 올리고당, 유기산 등의 대사산물을 통해 간접적으로 기능적 역할을 수행한다. probiotic 균이 면역반응(예: 사이토카인 및 항균 펩타이드 생산 조절)에 작용하는 기전을 토대로 이 박테리아들이 건강에 영향을 미치는 기전이 연구되고 있다. 유청 단백질은 항균 및 항발암 성질을 가지고 있으며, 여러 기능(예: 면역자극 생산, 건강 증진, 지방 침적 감소, 인슐린 감수성 향상등)을 가지고 있다. 유제품에 존재하는 박테리아와 특정 성분이 건강을 미치는 영향이 연구를 통해 밝혀지고 있다. 우유에 함유된 기능성 단백질, 생리활성, 펩타이드, 필수 지방산, 칼슘, 비타민 D 등의 물질은 면역체계, 심장혈관계, 위장관, 장 등의 건강을 증진시키며, 고혈압, 관상혈관질환, 비만, 골다공증, 암, 당뇨, 전달질병 등의 질환을 예방한다. 기능성 낙농식품에 함유된 성분들은 다양하게 응용되고 있다. 예를 들면, 카세인으로부터 파생된 포스포펩타이드가 식이보충제 및 제약보충제의 제조과정에 사용되고 있으며, 우유로부터 파생된 성장인자가 피부질환, 소화기계질환, 다리궤양, 건선, 내장, 골다공증 등을 치료하는 목적으로 사용되고 있다. 유제품을 통한 식이조절이 비만관리 및 예방에 도움이 될 가능성이 있으며, 건강을 증진시키는 질을 예방 및 치료 물질의 성분으로 사용될 것으로 여겨진다. 따라서 우유와 유제품이 기능성 식품 및 이 식품의 성분으로 사용될 가능성을 적극적으로 개발하는 연구가 절실히 요구되고 지속적으로 진행되어야 할 것이다.

  • PDF