References
- Lomax AR, Calder PC. 2009. Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 15: 1428-1518 https://doi.org/10.2174/138161209788168155
- Turroni F, van Sinderen D, Ventura M. 2009. Bifidobacteria: from ecology to genomics. Front Biosci 14: 4673-4684 https://doi.org/10.2741/3559
- Macfarlane S, Macfarlane GT, Cummings JH. 2006. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24: 701-714 https://doi.org/10.1111/j.1365-2036.2006.03042.x
- Geier MS, Butler RN, Howarth GS. 2007. Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J Food Microbiol 115: 1-11 https://doi.org/10.1016/j.ijfoodmicro.2006.10.006
- Mitsuoka T. 1992. Intestinal flora and aging. Nutr Rev 50: 438-446 https://doi.org/10.1111/j.1753-4887.1992.tb02499.x
- Roberfroid M. 2007. Prebiotics: the concept revisited. J Nutr 137: 830S-837S
- Kelly G. 2008. Inulin-type prebiotics-a review: part 1. Altern Med Rev 13: 315-329
- Marshall K. 2004. Therapeutic applications of whey protein. Altern Med Rev 9: 136-156
- Henning DR, Baer RJ, Hassan AN, Dave R. 2006. Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads. J Dairy Sci 89: 1179-1188 https://doi.org/10.3168/jds.S0022-0302(06)72187-7
- Hoppe C, Andersen GS, Jacobsen S, Molgaard C, Friis H, Sangild PT, Michaelsen KF. 2008. The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups. J Nutr 138: 145S-161S
- Johnson ME, Lucey JA. 2006. Major technological advances and trends in cheese. J Dairy Sci 89: 1174-1178 https://doi.org/10.3168/jds.S0022-0302(06)72186-5
- John RP, Nampoothiri KM, Pandey A. 2007. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74: 524-534 https://doi.org/10.1007/s00253-006-0779-6
- Fonseca GG, Heinzle E, Wittmann C, Gombert AK. 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79: 339-354 https://doi.org/10.1007/s00253-008-1458-6
- Monedero V, Maze A, Boël G, Zuniga M, Beaufils S, Hartke A, Deutscher J. 2007. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. J Mol Microbiol Biotechnol 12: 20-32 https://doi.org/10.1159/000096456
- Buriti FC, Saad SM. 2007. Bacteria of Lactobacillus casei group: characterization, viability as probiotics in food products and their importance for human health. Arch Latinoam Nutr 57: 373-380
- Barth CA, Behnke U. 1997. Nutritional physiology of whey and whey components. Nahrung 41: 2-12 https://doi.org/10.1002/food.19970410103
- Kaneko T, Mori H, Iwata M, Meguro S. 1994. Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Sci 77: 393-404 https://doi.org/10.3168/jds.S0022-0302(94)76965-4
- Petschow BW, Talbott RD. 1990. Growth promotion of Bifidobacterium species by whey and casein fractions from human and bovine milk. J Clin Microbiol 28: 287- 292
- Rahman MM, Kim WS, Ito T, Kumura H, Shimazaki K. 2009. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe 15: 133-137 https://doi.org/10.1016/j.anaerobe.2009.01.003
- Isawa K, Hojo K, Yoda N, Kamiyama T, Makino S, Saito M, Sugano H, Mizoguchi C, Kurama S, Shibasaki M, Endo N, Sato Y. 2002. Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3. Biosci Biotechnol Biochem 66: 679-681 https://doi.org/10.1271/bbb.66.679
- Furuichi K, Amano A, Katakura Y, Ninomiya K, Shioya S. 2006. Optimal aerobic cultivation method for 1,4-dihydroxy- 2-naphthoic acid production by Propionibacterium freudenreichii ET-3. J Biosci Bioeng 102: 198-205 https://doi.org/10.1263/jbb.102.198
- Furuichi K, Katakura Y, Ninomiya K, Shioya S. 2007. Enhancement of 1,4-dihydroxy-2-naphthoic acid production by Propionibacterium freudenreichii ET-3 fedbatch culture. Appl Environ Microbiol 73: 3137-3143 https://doi.org/10.1128/AEM.01307-06
Cited by
- Comparison of Bifidogenic Growth Stimulation Activities of Fermented Whey Prototypes vol.18, pp.4, 2013, https://doi.org/10.3746/pnf.2013.18.4.292
- Construction of a Recombinant Leuconostoc mesenteroides CJNU 0147 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Factor vol.35, pp.6, 2015, https://doi.org/10.5851/kosfa.2015.35.6.867
- Construction of bioluminescent Lactobacillus casei CJNU 0588 for murine whole body imaging vol.24, pp.2, 2015, https://doi.org/10.1007/s10068-015-0077-0
- Leuconostoc mesenteroides CJNU 0147 and Lactobacillus casei CJNU 0588 Improve Growth of a Bifidobacterium lactis Strain in Co-cultures vol.16, pp.4, 2011, https://doi.org/10.3746/jfn.2011.16.4.386
- Optimal production of fermented whey presenting bifidogenic growth stimulator activity vol.20, pp.5, 2011, https://doi.org/10.1007/s10068-011-0200-9