• Title/Summary/Keyword: natural beam-column element

Search Result 12, Processing Time 0.026 seconds

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.

Vibration Analysis of Stiffened Opening Thick Plate (유공 보강 후판의 진동해석)

  • 이효진;김일중;오숙경;정진택;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.794-798
    • /
    • 2004
  • This paper is analysis of stiffened opening thick plate on foundation. This paper has the object of investigating natural frequencies of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. In this paper, vibration analysis of rectangular opening thick plate is done by use of Serendipity finite element with 8 nodes by considering shearing strain of plate. And vibration analysis of stiffener is done by used of Timoshenko beam-column element wit 3 nodes. It is shown that natural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter, opening position, opening size, stiffener size.

  • PDF

The Eigenvalues and Their Relationships for the Rectangular Frame (4각형 골조의 고유치와 고유치 간의 관계)

  • Lee, Soo-Gon;Kim, Soon-Cheol;Song, Chang-Young;Song, Sang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.139-150
    • /
    • 2005
  • Finite element method is applied to the determinations of the two eigenvalues(the elastic critical load and the natural frequence of lateral vibrations) of single story-3 equal bay rectangular frame. The analysis parameters are taper parameter ${\alpha}$ for column, and beam span to column height ratio, ${\beta}$ and second moment area ratio of beam to column, ${\Upsilon}$. Support condition at the column base and sway condition at the column top are also considered in the stability analysis of frame. The changes in the coefficient of eigenvalue are represented by algebraic function of analysis parameter. The coefficients estimated by the proposed algebraic function show good agreement with those determined by finite element method, which suggest the design aid role of the proposed function. By increasing the column axial forces step by step, the corresponding frequencies are also determined, which makes one examine or confirm the relationship suggested by other studies.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

Vibration Analysis of Stiffened Thick Plate Subjected to Static Inplane Stress Using Finite Element Method (면내응력을 받는 보강 후판의 유한요소법에 의한 진동해석)

  • 오숙경;김일중;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.952-956
    • /
    • 2004
  • The soil-structure interactions are caused by the point sources of explosions, deriving piles, compaction of foundations and excavations those are frequently arose in the construction sites. Thus the analysis of soil-structure interactions is one of the most important subjects in the fields of dynamic analysis and vibration control. From this viewpoint, the aim of this study is to collect the basic data for designing foundation structures throughout understanding the dynamic structural behavior, which is embodied by the dynamic analysis of soil-structure systems. In this study, the dynamic analyses of stiffened thick plates subjected to in-plane stress on elastic foundations are carried out. The foundation is modeled as Pasternak foundation that includes the continuity effect of foundations. Also both the Mindlin plate theory and Timoshenko beam-column theory are used for analyzing the thick plates and beams, respectively.

  • PDF

Eigenvalue Analysis of Stiffened Plates on Pasternak Foundations (Pasternak지반위에 놓인 보강판의 고유치해석)

  • Lee, Byoung-Koo;Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-158
    • /
    • 2005
  • This research analyzes eigenvalue analysis of stiffened plates on the Pasternak foundations using the finite clement method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity clement system and 3-nodes finite element system were used for plate and beam elements, respectively. Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundations is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in reference, experimental solutions and solutions obtained by SAP 2000. The natural frequency of stiffened plates on Pasternak foundations were determined according to changes or foundation parameters and dimensions of stiffener.

The Relationship between Critical Load and Frequency of Sinusolidally Non-symmetrically Tapered Member (정현상 비대칭으로 Taper진 부재의 임계하중과 고유진동수와의 관계)

  • Lee, Hyuck;Hong, Jong-Kook;Lee, Soo-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.59-66
    • /
    • 2000
  • It is generally known that the lateral frequency( ω) of the vibration of a prismatic beam-column decreases according to the rele (equation omitted) (ω/sub 0/=natural frequency). In the cases of tapered members, the determination of P/ sub/ cr/(elastic critical load) and ω/ sub 0/ are not easy. Furthermore, the relationship between the compressive load and frequency can not be determined by the conventional analytical method. The axial force-frequency relationship of sinusolidally non-symmetrically tapered members with different shapes were investigated using the finite element method. To obtain the two eigenvalues, the axial thrust was increased step by step and the corresponding frequency was calculated. The result indicated that the axial thrust of the elastic critical load ratio and the square of the frequency ratio can be approximately represented in any case by a straight line. Finally, the linear relationship is also applicable to the sinusolidally non-symmetrically tapered member.

  • PDF

A Study on Development of Artificial Neural Network (ANN) for Deep Excavation Design (깊은굴착 설계를 위한 인공신경망 개발에 관한 연구)

  • Yoo, Chungsik;Yang, Jaewon;Abbas, Qaisar;Aizaz, Haider Syed
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.199-212
    • /
    • 2018
  • This research concerns the prediction method for ground movement and wall member force due to determination structural stability check and failure check during deep excavation construction. First, research related with excavation influence parameters is conducted. Then, numerical analysis for various excavation conditions were conducted using Finite Element Method and Beam-column elasto-plasticity method. Excavation analysis database was then constructed. Using this database, development of ANN (artificial neural network) was performed for each ground movements and using structural member forces. By comparing the numerical analysis results with ANN's prediction, it is validated that development of ANN can be used efficient for prediction of ground movement and structural member forces in deep excavation site.