• Title/Summary/Keyword: nanotube of carbon

Search Result 1,672, Processing Time 0.034 seconds

Molecular Dynamics Simulations on the Mechanical Behavior of Carbon Nanotube (탄소나노튜브의 역학적 거동에 관한 분자동역학 전산모사)

  • Park, Jong-Youn;Lee, Young-Min;Jun, Suk-Ky;Kim, Sung-Youb;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1083-1088
    • /
    • 2003
  • Molecular dynamics simulations on the deformation behavior of single-walled carbon nanotube are performed. Formation energies of CNT's by interatomic potentials are computed and compared with ab initio results. Bending and axial compression are applied under lattice statics and NVT ensemble conditions. Specifically, we focus on the mechanism of kink formation in bending. The simulation results are comprehensively explained in the framework of atomistic energetics. The effects of temperature and chirality on the deformation of carbon nanotube are also studied.

  • PDF

Fabrication of carbon nanotube electron beam (C-beam) for thin film modification

  • Kang, Jung Su;Lee, Su Woong;Lee, Ha Rim;Chung, Min Tae;Park, Kyu Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.171.1-171.1
    • /
    • 2015
  • Carbon nanotube emitters is very promising electron emitter for electron beam applications. We introduced the carbon nanotube electron beam (C-beam) exposure technic using triode structure. As a source, the electron beam emit from CNT emitters placed at the cathode by high electric field. Through the gate mesh, with high accelerating energy, the electron can be extracted easily and impact at the anode plate. For thin film modification, after the C-beam exposure on the amorphous silicon thin film, we found phase changes and it showed a high crystallinity from the Raman measurement. We expect that this crystallized film will be a good candidate as a new active layer of TFT.

  • PDF

N-Type Carbon-Nanotube MOSFET Device Profile Optimization for Very Large Scale Integration

  • Sun, Yanan;Kursun, Volkan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • Carbon-nanotube metal oxide semiconductor field effect transistor (CN-MOSFET) is a promising future device candidate. The electrical characteristics of 16 nm N-type CN-MOSFETs are explored in this paper. The optimum N-type CN-MOSFET device profiles with different number of tubes are identified for achieving the highest on-state to off-state current ratio ($I_{on}/I_{off}$). The influence of substrate voltage on device performance is also investigated in this paper. Tradeoffs between subthreshold leakage current and overall switch quality are evaluated with different substrate bias voltages. Technology development guidelines for achieving high-speed, low-leakage, area efficient, and manufacturable carbon nanotube integrated circuits are provided.

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

An Experiment about Assembling Condition of Carbon Nanotube Tip for AFM (주사탐침현미경용 카본나노튜브 팁의 조립 조건 실험)

  • 박준기;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper describes the fabrication method for atomic force microscopy(AFM) tip with multi-walled carbon nanotube(MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which cause the dielectrophoresis was used for alignment and deposition of CNTs in this research. By dropping the MWNT solution and applying an electric field between an AFM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the AFM tips due to the attraction by the dielectrophoretic force. In this case, we investigate the effect of the angle between a tip axis and an electrode. Experimental setup were presented, and then CNT attached AFM tips are successfully shown in this paper.

  • PDF

Synthesis and Characterization of Carbon Nanotube Using Ni-W alloyed Catalyst Substrate (Ni-W 합금 촉매를 이용한 carbon nanotube 제조 및 특성 분석)

  • 정성회;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.328-331
    • /
    • 2000
  • Carbon nanotube(CNT) was successfully grown on Ni-W alloyed substrate by applying PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni-W alloyed substrate was prepared by mechanical alloying method. In order to find the optimum growth condition, initially two different types of gas mixtures such ac $C_2$H$_2$-H$_2$and $C_2$H$_2$-MH$_3$were systematically investigated by adjusting results on the mixing ratio in temperature range of 500 to 80$0^{\circ}C$. In this work, we will report the preliminary results on the CNT processed by PECVD, which were characterized by XRD, SEM and TEM. Finally we will evalute the effect on CNT growth by changing many processing parameters, such as typical gas, mixing ratio between 2 mixture, plasma power and etc.

  • PDF

Carbon-Nanotube FED;Japanese National Project

  • Soichiro, Okuda
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.855-859
    • /
    • 2004
  • The Japanese National Project "Carbon Nanotube FED" is developing a high image-quality and low power-consumption field emission display (FED) by applying carbon nanotube (CNT) to the electron source. A uniform electron source with a flat-film CNTs and fine structure triodes Fir suppressing the deviation of emission is required. For realizing an FED panel, it is also necessary to develop the glass-bulb technologies for vacuum sealing, and display technologies for driving the panel by circuit electronic and for evaluating the picture quality by measuring. By achieving these technologies, an FED compatible with conventional Cathode Ray Tubes (CRTs) will be realized.

  • PDF

Synthesis of Carbon Nanotube and Optical Application (탄소나노튜브의 제조 및 광학적 응용 연구)

  • Joo, Young-Joon;So, Won-Wook;Kim, Heejoo;Chol, Ho-Suk;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.247-257
    • /
    • 2003
  • To investigate the effect of preparing condition on the physical properties of carbon nanotubes suitable for optical applications, carbon nanotubes were synthesized by thermal chemical vapor deposition using Ni particles as a catalyst on stainless steel substrate and acetylene as a reactant gas. To examine the physical and optical properties, SEM, TEM, Ram an, UV-visible, and photoluminescence spectroscopy were used. The physical properties of carbon nanotubes such as diameter, degree of growth density and morphology were closely related to such experimental conditions as Ni particle size, growing pressure, and etching condit on of Ni particles, it appeared from the light absorbance and photoluminescence spectra of carbon nanotube mixture prepared with an addition of a photopolymer, P3HT(Poly(3-hexylthIop hene)) that carbon nanotube could do a role as a kind of electron acceptor for solar cell application.

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites

  • Jarali, Chetan S.;Madhusudan, M.;Vidyashankar, S.;Lu, Y. Charles
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.