• Title/Summary/Keyword: nanomechanics

Search Result 37, Processing Time 0.022 seconds

An Ultra-precision Electronic Clinometer for Measurement of Small Inclination Angles

  • Tan, Siew-Leng;Kataoka, Satoshi;Ishikawa, Tatsuya;Ito, So;Shimizu, Yuuki;Chen, Yuanliu;Gao, Wei;Nakagawa, Satoshi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • This paper describes an ultra-precision electronic clinometer, which is based on the capacitive-based fluid type, for detection of small inclination angles. The main parts of the clinometer low-noise electronics are two capacitance measurement circuits for converting the capacitances of the capacitors of the clinometer into voltages, and a differential amplifier for obtaining the difference of the capacitances, which is proportional to the input inclination angle. A 16 bit analog to digital (AD) converter is also embedded into the same circuit board, whose output is sent to a PC via RS-232C, for achieving a small noise level down to tens of ${\mu}v$. A compensation method, which is referred to as the delay time method for shortening the stabilization time of the sensor was also discussed. Experimental results have shown the possibility of achieving a measurement resolution of $0.0001^{\circ}$ as well as the quick measurement with the delay time method.

Fabrication of Large-area Micro-lens Arrays with Fast Tool Control

  • Noh, Young-Jin;Arai, Yoshikazu;Tano, Makoto;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.32-38
    • /
    • 2008
  • This paper describes a fast tool control (FTC)-based diamond turning process for fabricating large-area high-quality micro-lens arrays. The developed FTC unit has a stroke of $48{\mu}m$ and a resonance frequency of 4.9 kHz. Micro-lens arrays were fabricated using a micro-cutting tool with a nose radius of $50{\mu}m$. The FTC unit was integrated with a force sensor so that the initial position of the micro-cutting tool with respect to the workpiece surface could be detected through monitoring the contacting force. The length and depth of the designed parabolic micro-lens profile were $190{\mu}m$ and $20{\mu}m$, respectively. A micro-lens array was fabricated on a cylinder surface over an area of ${\phi}55 mm{\times}40 mm$.

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

산소유량 변화에 의한 산소 과포화된 HfOx 박막의 고온 열처리에 따른 Nanomechanics 특성 연구

  • Park, Myeong-Jun;Lee, Si-Hong;Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.389-389
    • /
    • 2013
  • HfOx (Hafnium oxide)는 ~25의 고유전상수, 5.25 eV의 비교적 높은 Band-gap을 갖는 물질로 MOSFET (metal-oxide semiconductor field-effect-transistor) 구조의 Oxide 박막을 대체 가능한 물질로 연구가 지속되고 있다. 현재까지 진행된 대다수의 연구는 증착 조건에 따른 박막의 결정학적 및 전기적 특성에 대한 주제로 진행되었고 다양한 연구 결과가 보고된바 있다. 하지만 기존의 연구 기법은 박막의 nanomechanics 특성에 대한 연구가 부족하여 이를 보완하기 위한 연구가 절실하다. 따라서 본 연구에서는 HfOx 박막 내 포함된 산소가 고온 열처리 과정에서 빠져나감으로 인한 박막의 nanomechanics 특성을 확인하고자 하였다. 시료는 rf magnetron sputter를 이용하여Si (silicon) 기판위에 Hafnium target으로 산소유량(5, 10, 15 sccm)을 달리하여 증착하였고, 이후 furnace에서 $400^{\circ}C$에서 $1,000^{\circ}C$까지 질소분위기에서 20분간 열처리를 실시하였다. 실험결과 시료의 전기적 특성을 I-V 곡선을 측정하여 확인하였고, 증착 시 산소 유량이 5 sccm에서 15 sccm으로 증가함에 따라서 누설전류 특성은 급격히 향상되었고, 열처리 온도가 증가함에 따라 감소하는 특성을 나타내었다. 또한 시료의 nanomechanics 특성을 확인하기 위하여 nano-indenter를 이용하여 시료의 표면강도(surface hardness)와 탄성계수(elastic modulus)를 확인하였다. 측정결과 5 sccm 시료의 표면강도와 탄성계수는 상온에서 열처리 온도가 증가함에 따라 각각 7.75 GPa에서 9.19 GPa로, 그리고 133.83 GPa에서 126.64 GPa로 10, 15 sccm의 박막의 비하여 상대적으로 균일한 특성을 나타내었다. 이는 증착 시 박막 내 과포화된 산소가 열처리 과정에서 빠져나감으로 인한 것이며, 또한 과포화된 정도에 따라 더 적은 열처리 에너지에 의하여 박막을 빠져나감으로 인한 것으로 판단된다. 또한 열처리 과정에서 산소가 빠져나가는 상대적인 flux의 영향으로 인하여 박막의 mechanical한 균일도의 변화가 나타났다.

  • PDF

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

An AFM-based Edge Profile Measuring Instrument for Diamond Cutting Tools

  • Asai, Takemi;Motoki, Takenori;Gao, Wei;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.54-58
    • /
    • 2007
  • This paper describes an atomic force microscope (AFM)-based instrument for measuring the nanoscale cutting edge profiles of diamond cutting tools. The instrument consists of a combined AFM unit and an optical sensor to align the AFM tip with the top of the diamond cutting tool edge over a submicron range. In the optical sensor, a aser beam is emitted from a laser diode along the Y-axis and focused to a small beam spot with a diameter of approximately $10{\mu}m$ at the beam waist, which is then received by a photodiode. The top of the tool edge is first brought into the center of the beam waist by adjusting it in the X-Z-plane while monitoring the variation in the photodiode output. The cutting tool is then withdrawn and its top edge position at the beam center is recorded. The AFM tip can also be positioned at the beam center in a similar manner to align it with the top of the cutting edge. To reduce electronic noise interference on the photodiode output and thereby enhance the alignment accuracy, a technique is applied that can modulate the photodiode output to an AC signal by driving the laser diode with a sinusoidal current. Alignment experiments and edge profile measurements of a diamond cutting tool were carried out to verify the performance of the proposed system.

A Single Lens Micro-Angle Sensor

  • Saito, Yusuke;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.14-19
    • /
    • 2007
  • Angle sensors based on the principle of autocollimation, which are usually called autocollimators, can accurately measure small tilt angles of a light-reflecting flat surface. This paper describes a prototype micro-angle sensor that is based on the laser autocollimation technique. The new angle sensor is compact and consists of a laser diode as the light source and a quadrant photodiode as a position-sensing device. Because of its concise design, the microangle sensor facilitates dynamic measurements of the angular error motions of a precision stage without influencing the original dynamic properties of the stage. This is because the sensor only requires a small extra target mirror to be mounted on the stage. The sensitivity of the angle detection is independent of the focal length of the objective lens; therefore, an objective lens with a relatively short focal length is employed to reduce the size of the device. The micro-angle sensor uses a single lens for the both the laser collimation and focusing, which distinguishes it from the conventional laser autocollimation method that has separate collimate and objective lenses. The new micro-angle sensor has dimensions of $15.1\times22.0\times14.0mm$ and its resolution is better than 0.1 arc-second The optical design and performance of this micro-angle sensor were verified by experimental results.

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.