• 제목/요약/키워드: nanofiltration (NF)

검색결과 107건 처리시간 0.022초

Nanofiltration of Dyeing Wastewater Using Polyamide Ro-Membranes after the Pretreatment with Chemical Coagulants

  • Hwang Jeong-Eun;Jegal Jonggeon;Mo Joonghwan;Kim Jaephil
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.58-66
    • /
    • 2005
  • Nanofiltration (NF) of a dyeing wastewater was carried out using polyamide NF-membranes. Before applying the wastewater to the membrane process, it was pretreated with various chemical coagulants such as alum, ferric chloride and HOC-100A. In order to see the effect of the pretreatment of the wastewater using chemical coagulants on the membrane separation process, the optimum conditions for the coagulation and sedimentation process using the chemical coagulants were sought. By the pretreatment, despite the different coagulants used, the chemical oxygen demand (COD) and UV-absorbance of the wastewater were lowered by more than $70\%$. The pretreated wastewater was then applied to the membrane process. The effect of the coagulants used for the pretreatment on the membrane fouling was studied. From this study, it was found that the HOC-100A was the best out of the coagulants used far the removal of the materials that could cause membrane fouling.

The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies

  • Hassan, Abdul Rahman;Rozali, Sabariah;Safari, Nurul Hannan Mohd;Besar, Badrul Haswan
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.316-322
    • /
    • 2018
  • In this study, the effects of polymer concentration and additive in the formation of asymmetric nanofiltration (NF) membrane were evaluated. The membrane fabrication was carried out via dry/wet phase inversion technique. A new formulation of dope solution with polymer concentration ranging between 17 wt% to 21 wt% and the present of additive was developed. The results show that the permeate flux gradually decreases as polymer concentration increased, until $2.5969L/m^2h$ and increased the rejection up to 98.7%. Addition of additive, polyethylene glycol 600 increased dyes rejection up to 99.8% and decreased the permeate flux to $3.6501L/m^2h$. This indicates that the addition of polyethylene glycol additive led towards better membrane performance. The morphological characteristics of NF membrane were analysed using a Scanning Electron Microscopy.

다단 나노여과 공정에서 고농도 geosmin 및 2-Methylisoborneol (MIB)의 제거특성 (Rejection property of geosmin and 2-Methylisoborneol (MIB) with high concentration level at multi stage nanofiltration (NF) membrane system)

  • 유영범;최양훈;김동진;권순범;김충환
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.397-409
    • /
    • 2014
  • Algal problem in drinking water treatment is being gradually increased by causing deterioration of water supplies therefore, especially taste and odor compounds such as geosmin and 2-MIB occur mainly aesthetic problem by its unpleasant effects resulting in the subsequent onset of complaints from drinking water consumer. Recently, geosmin and 2-MIB are detected frequently at abnormally high concentration level. However, conventional water treatment without advanced water treatment processes such as adsorption and oxidation process, cannot remove these two compounds efficiently. Moreover, it is known that the advanced treatment processes i.e. adsorption and oxidation have also several limits to the removal of geosmin and 2-MIB. Therefore, the purpose of this study was not only to evaluate full scale nanofiltration membrane system with $300m^3/day$ of permeate capacity and 90% of recovery on the removal of geosmin and 2-MIB in spiked natural raw water sources at high feed concentration with a range of approximately 500 to 2,500 ng/L, but also to observe rejection property of the compounds within multi stage NF membrane system. Rejection rate of geosmin and 2-MIB by NF membrane process was 96% that is 4% of passage regardless of the feed water concentration which indicates NF membrane system with an operational values suggested in this research can be employed in drinking water treatment plant to control geosmin and 2-MIB of high concentration. But, according to results of regression analysis in this study it is recommended that feed water concentration of geosmin and 2-MIB would not exceed 220 and 300 ng/L respectively which is not to be perceived in drinking tap water. Also it suggests that the removal rate might be depended on an operating conditions such as feed water characteristics and membrane flux. When each stage of NF membrane system was evaluated relatively higher removal rate was observed at the conditions that is lower flux, higher DOC and TDS, i.e., $2^{nd}$ stage NF membrane systems, possibly due to an interaction mechanisms between compounds and cake layer on the membrane surfaces.

정밀여과 및 나노여과 공정을 이용한 지표수의 상수처리 (Drinking Water Treatment of Surface Water Using Microfiltration-Nanofiltration Processes)

  • 이성우;김충환;곽동희
    • 상하수도학회지
    • /
    • 제14권3호
    • /
    • pp.224-230
    • /
    • 2000
  • Membrane processes are capable of removing much materials from water. The removal or rejection characteristics of a membrane is usually depend upon the nominal pore size or MWCO(molecular weight cut off). A membrane with a smaller nominal pore size or MWCO should be capable of removing smaller contaminants from water. A series of experiments was performed to investigate the separation characteristics of membrane processes which consisted of microfiltration(MF) and nanofiltration(NF). To evaluate removal efficiencies of some pollutants such as the consumption of $KMnO_4$, THMFP, NH3-N, Fe, Mn, and pesticides, source water sampled from the Kum river was treated by the those membrane processes. Also, the results of experiments were compared with those of conventional water treatment processes. By two types of the membrane process, total removal efficiency of $KMnO_4$ consumed, THMEP, and $NH_3-N$ were 91.0%, 84.3%, and 85.5%, respectively and those processes were efficient in pesticides removal as well. Most of the effluents satisfied the Korean standard of drinking water quality continuously in the experimental periods. However, NF was needed for producing the safe drinking water in case of treating the raw water contaminated with Mn since removal efficiency of MF was not high enough. On the basis of the experimental results, it was suggested that NF could be applied to remove not only $NH_3-N$ but THMFP even without pre-chlorination.

  • PDF

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • 제11권2호
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).

Effects of hypochlorite exposure on morphology and trace organic contaminant rejection by NF/RO membranes

  • Simon, Alexander;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • 제5권4호
    • /
    • pp.235-250
    • /
    • 2014
  • The impacts of membrane degradation due to chlorine attack on the rejection of inorganic salts and trace organic contaminants by nanofiltration (NF) and reverse osmosis (RO) membranes were investigated in this study. The rejection of trace contaminants was examined at environmentally relevant concentrations. Changes in the membrane surface morphology were observed as a result of chlorine exposure. A small increase in rejection was consistently observed with all four membranes selected in this study after being exposed to a low concentration of hypochlorite (100 ppm). In contrast, a higher concentration of hypochlorite (i.e., 2000 ppm) could be detrimental to the membrane separation capacity. Membranes with severe chlorine impact showed a considerable decrease in rejection over filtration time, possibly due to rearrangement of the polyamide chains under the influence of chlorine degradation and filtration pressure. The reported results indicate that loose NF membranes are more sensitive to chlorine exposure than RO membranes. The impact of hypochlorite exposure (both positive and negative) on rejection is dependent on the strength of the hypochlorite solution and is more significant for the neutral carbamazepine compound than the negatively charged sulfamethoxazole.

Removal of Perchlorate Using Reverse Osmosis and Nanofiltration Membranes

  • Han, Jonghun;Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Lee, Heebum;Her, Namguk
    • Environmental Engineering Research
    • /
    • 제17권4호
    • /
    • pp.185-190
    • /
    • 2012
  • Rejection characteristics of perchlorate ($ClO_4^-$) were examined for commercially available reverse osmosis (RO) and nanofiltration (NF) membranes. A bench-scale dead-end stirred-cell filtration system was employed to determine the toxic ion rejection and the membrane flux. Model water solutions were used to prepare $ClO_4^-$ solutions (approximately, $1,000{\mu}g/L$) in the presence of background salts (NaCl, $Na_2SO_4$, and $CaCl_2$) at various pH values (3.5, 7, and 9.5) and solution ionic strengths (0.001, 0.01, and 0.01 M NaCl) in the presence of natural organic matter (NOM). Rejection by the membranes increased with increasing solution pH owing to increasingly negative membrane charge. In addition, the rejection of the target ion by the membranes increased with increasing solution ionic strength. The rejection of $ClO_4^-$ was consistently higher for the RO membrane than for the NF membrane and $ClO_4^-$ rejection followed the order $CaCl_2$ < NaCl < $Na_2SO_4$ at conditions of constant pH and ionic strength for both the RO and NF membranes. The possible influence of NOM on $ClO_4^-$ rejection by the membranes was also explored.

NF막에 의한 다양한 염료용액의 막분리 특성 (Study on the Nanofiltration of Various Dye Solutions)

  • 양정목;김탁현;박철환;김지형;김상용
    • 청정기술
    • /
    • 제10권1호
    • /
    • pp.37-45
    • /
    • 2004
  • 본 연구는 섬유산업에서 많이 사용되고 있는 주요염료인 분산성, 반응성, 산성염료를 대상으로 일반적인 수질오염항목인 COD, T-N, TOC, color, SS, TDS, conductivity 등을 분석하여 각각의 염료용액의 성상을 비교 분석하였고, NF막을 투과시켰을 경우 투과 flux와 배제율이 염료용액 종류에 따라서 어떻게 다른 양상을 나타내는지를 연구하였다. 결과적으로, 염료종류별 화학적 성질 및 구조적인 차이에 의하여 염료용액의 용해도 및 유기물부하 등이 달라짐을 알 수 있었고, 특히, 분산성 염료와 반응성염료는 이들 화학적 성질의 차이가 매우 현격하게 달라서 투과 flux 감소현상과 유기물, color, 부유물 및 용존 고형물, 이온성 물질 등의 배제율이 다른 양상을 보임을 알 수 있었다. 반응성염료 용액은 분산성염료 용액에 비하여 투과 flux는 높지만, TDS의 배제율이 낮은 반면, 분산성염료 용액은 부유성 고형물 농도가 높아 투과 flux가 낮고, 유기물질의 배제율이 낮은 특성을 나타낸다.

  • PDF

NF용 중공사 분리막의 발전 (Progress of Nanofiltration Hollow Fiber Membrane)

  • 장한나;김성중;이용택;이규호
    • 공업화학
    • /
    • 제24권5호
    • /
    • pp.456-470
    • /
    • 2013
  • 중공사형 막은 지난 수십 년간 빠르게 성장하고 있는 새로운 기술의 하나이다. 또한, 고분자 소재를 이용한 분리막은 기체분리, 연료전지, 수처리, 폐수처리, 유기물 분리 등 여러 분야에서 주목 받고 있다. 그중에서도 액체분리용 역삼투(RO)와 한외여과(Ultrafiltration)막의 중간 특성을 갖는 나노여과(Nanofiltration)막은 상대적으로 역삼투 막에 비하여 낮은 투자비와 낮은 운전압력, 높은 투과 성능을 가지며 다가 음이온 염과 $200{\sim}1000gmol^{-1}$사이의 유기물에 대한 높은 제거율을 갖는 막이다. 본 논문에서는 NF 중공사 분리막의 소재, 제조 방법(상전이법과 계면중합법)에 따른 멤브레인의 구조 제어 및 다양한 특성 평가에 관한 연구동향을 살펴보고자 한다. 현재 대부분의 NF용 분리막은 평막형(plate and frame type)이나 나권형(spiral wound type)으로 제품화 되고 있는데, 중공사형(hollow-fiber type)의 제품화가 지연되고 있는 것은 기존 소재를 바탕으로 제조할 경우 강도면에서 안정적이지 못한 면이 있으므로 새로운 소재를 개발하거나 기존 소재의 개선이 필요할 것으로 보인다. 이러한 부분을 보완할 수 있을 만한 제조 기술이 확보된다면 중공사 형태의 나노여과막이 점차 나권형막을 대체하여 시장에서 높은 점유율을 나타낼 수 있을 것이다.

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.