Progress of Nanofiltration Hollow Fiber Membrane

NF용 중공사 분리막의 발전

  • Jang, Hanna (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Seongjoong (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Yongtaek (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Kew-Ho (Green Chemistry Division, Korea Research Institute of Chemical Technology)
  • 장한나 (한국화학연구원 환경자원공정연구센터) ;
  • 김성중 (한국화학연구원 환경자원공정연구센터) ;
  • 이용택 (충남대학교 화학공학과) ;
  • 이규호 (한국화학연구원 환경자원공정연구센터)
  • Published : 2013.10.31

Abstract

Hollow-fiber membranes, is one of the new technologies that is growing rapidly in the past few decades. In addition, separation membranes using polymer materials, have attracted attentions in various fields including gas separation, fuel cells, water treatment, wastewater treatment, and organic separation. Nanofiltration (NF) membranes having the separation characteristics in the intermediate range between ultrafiltration and reverse osmosis (RO) membranes for liquid separation, with relatively low investment cost and operating pressure lower than that of RO membranes, have high permeance and rejection performance of multivalent ions as well as organic compounds of molecular weight between $200{\sim}1000gmol^{-1}$. In this paper, we would like to review the research trends on the various structure control and characterization of NF hollow fiber membranes with respect to materials and the methods of preparation (phase inversion method and interfacial polymerization method). Currently, most of NF membranes have been manufactured by plate and frame types or spiral wound types. But hollow fiber types have delayed in commercial products, because of the weak strength when to produce on the basis of the existing materials, therefore the development of new materials or improvement of existing materials will be needed. If improving manufacturing technology is available, hollow fiber types will replace spiral wound types and gradually show a higher market share.

중공사형 막은 지난 수십 년간 빠르게 성장하고 있는 새로운 기술의 하나이다. 또한, 고분자 소재를 이용한 분리막은 기체분리, 연료전지, 수처리, 폐수처리, 유기물 분리 등 여러 분야에서 주목 받고 있다. 그중에서도 액체분리용 역삼투(RO)와 한외여과(Ultrafiltration)막의 중간 특성을 갖는 나노여과(Nanofiltration)막은 상대적으로 역삼투 막에 비하여 낮은 투자비와 낮은 운전압력, 높은 투과 성능을 가지며 다가 음이온 염과 $200{\sim}1000gmol^{-1}$사이의 유기물에 대한 높은 제거율을 갖는 막이다. 본 논문에서는 NF 중공사 분리막의 소재, 제조 방법(상전이법과 계면중합법)에 따른 멤브레인의 구조 제어 및 다양한 특성 평가에 관한 연구동향을 살펴보고자 한다. 현재 대부분의 NF용 분리막은 평막형(plate and frame type)이나 나권형(spiral wound type)으로 제품화 되고 있는데, 중공사형(hollow-fiber type)의 제품화가 지연되고 있는 것은 기존 소재를 바탕으로 제조할 경우 강도면에서 안정적이지 못한 면이 있으므로 새로운 소재를 개발하거나 기존 소재의 개선이 필요할 것으로 보인다. 이러한 부분을 보완할 수 있을 만한 제조 기술이 확보된다면 중공사 형태의 나노여과막이 점차 나권형막을 대체하여 시장에서 높은 점유율을 나타낼 수 있을 것이다.

Keywords

References

  1. Munir Cheryan, Ultrafiltration and microfiltration handbook, University of lllionois Urbano, Technomic Publishing Company, Inc., USA, (1998).
  2. Marcel Mulder, Basic Principles of Membrane Technology, Kluwer academic publishers, Netherlands (1996).
  3. S. P. Sun, T. A. Hatton, S. Y. Chan, and T.-S. Chung, Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water, J. Membr. Sci., 401, 152 (2012).
  4. B. J. Cha, S. D. Chi, and J.-H. Kim, Membrane Market for Water Treatment, KIC News, 14, 2 (2011).
  5. I.-C. Kim and K.-H. Lee, Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes, Desalination, 192, 246 (2006). https://doi.org/10.1016/j.desal.2005.05.030
  6. I.-H. Choi, I.-C. Kim, B.-R. Min, and K.-H. Lee, Investigation of Photocatalytic Process on Removal of Natural Organic Matter in Nanofiltration Process, Membrane Journal, 17, 244 (2007).
  7. C. Y. Feng, K. C. Khulbe, T. Matsuura, and A. F. Ismail, Recent progresses in polymeric hollow fibermembrane preparation, characterization and applications, Sep. Purif. Technol., 111, 43 (2013). https://doi.org/10.1016/j.seppur.2013.03.017
  8. A. I. Schafer, A. G. Fane, and T. D. Waite, Nanofiltration-Princioles and Applications, Elsevier, Amsterdam (2005).
  9. S. Adham and P. Gagliardo, Membrane Bioreactors for Water Repurification-Phase I, Desalination Research and Development Program Report No. 34, Project No. 1425-97-FC-81-30006J, Bureau of Reclamation, November (1998).
  10. Y.-L. Li and K.-L. Tung, The effect of curvature of a spacer-filled channel on fluid flow in spiral-wound membrane modules, J. Membr. Sci., 319, 286 (2008). https://doi.org/10.1016/j.memsci.2008.03.069
  11. 한국막학회, 막분리(기초), 자유 아카데미, 한국.
  12. I.-C. Kim, K.-H. Lee, and T.-M. Tak, Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane, J. Membr. Sci., 183, 235 (2001). https://doi.org/10.1016/S0376-7388(00)00588-3
  13. N. Peng, N. Widjojo, P. Sukitpaneenit, M. M. Teoh, G. G. Lipscomb, T.-S. Chung, and J.-Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future, Progress in Polymer Science, 37, 1401 (2012). https://doi.org/10.1016/j.progpolymsci.2012.01.001
  14. B. J. Cha and S. D. Chi, Polymeric Membranes for Water Treatment, Polymer Science and Technology, 22, 553 (2011).
  15. K. Y. Wang and T.-S. Chung, Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate, J. Membr. Sci., 281, 307 (2006). https://doi.org/10.1016/j.memsci.2006.03.045
  16. J. Lv, K. Y. Wang, and T.-S. Chung, Investigation of amphoteric polybenzimidazole (PBI) nanofiltration hollow fiber membrane for both cation and anions removal, J. Membr. Sci., 310, 557 (2008). https://doi.org/10.1016/j.memsci.2007.11.050
  17. S. P. Sun, K. Y. Wang, N. Peng, T. A. Hatton, and T.-S. Chung, Novel polyamide-imide/cellulose acetate dual-layer hollow fiber membranes for nanofiltration, J. Membr. Sci., 363, 232 (2010). https://doi.org/10.1016/j.memsci.2010.07.038
  18. N. Bolong, A. F. Ismail, M. R. Salim, D. Rana, T. Matsuura, and A. Tabe-Mohammadi, Negatively charged polyethersulfone hollow fiber nanofiltration membrane for the removal of bisphenol A from wastewater, Sep. Purif. Technol., 73, 92 (2010). https://doi.org/10.1016/j.seppur.2010.01.001
  19. W. J. Lau, A. F. Ismail, N. Misdan, and M. A. Kassim, A recent progress in thin film composite membrane: A review, Desalination, 287, 190 (2012). https://doi.org/10.1016/j.desal.2011.04.004
  20. I.-C. Kim, B.-R. Jeong, S.-J. Kim, and K.-H. Lee, Preparation of high flux thin film composite polyamide membrane: The effect of alkyl phosphate additives during interfacial polymerization, Desalination, 308, 111 (2013). https://doi.org/10.1016/j.desal.2012.08.001
  21. T. He, M. Frank, M. H. V. Mulder, and M. Wessling, Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK), J. Membr. Sci., 307, 62 (2008). https://doi.org/10.1016/j.memsci.2007.09.016
  22. Y. Liu, B. He, J. Li, R. D. Sanderson, L. Li, and S. Zhang, Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization, J. Membr. Sci., 373, 98 (2011). https://doi.org/10.1016/j.memsci.2011.02.045
  23. S. P. Sun, T. A. Hatton, and T.-S. Chung, Hyperbranched Polyethyleneimine Induced Cross-Linking of Polyamide-imide Nanofiltration Hollow Fiber Membranes for Effective Removal of Ciprofloxacin, Environ. Sci. Technol., 45, 4003 (2011). https://doi.org/10.1021/es200345q
  24. S. K. Maurya, K. Parashuram, P. S. Singh, P. Ray, and A. V. R. Reddy, Preparation of polysulfone-polyamide thin film composite hollow fiber nanofiltration membranes and their performance in the treatment of aqueous dye solutions, Desalination, 304, 11 (2012). https://doi.org/10.1016/j.desal.2012.07.045
  25. S. Verissimo, K.-V. Peinemann, and J. Bordado, Thin-film composite hollow fiber membranes: An optimized manufacturing method, J. Membr. Sci., 264, 48 (2005). https://doi.org/10.1016/j.memsci.2005.04.020
  26. A. P. Korikov, P. B. Kosaraju, and K. K. Sirkar, Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films, J. Membr. Sci., 279, 588 (2006). https://doi.org/10.1016/j.memsci.2005.12.051
  27. P. B. Kosaraju and K. K. Sirkar, Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration, J. Membr. Sci., 321, 155 (2008). https://doi.org/10.1016/j.memsci.2008.04.057
  28. S. Verissimo, K.-V. Peinemann, and J. Bordado, New composite hollow fiber membrane for nanofiltration, Desalination, 184, 1 (2005). https://doi.org/10.1016/j.desal.2005.03.069
  29. F. Yang, S. Zhang, D. Yang, and X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, J. Membr. Sci., 301, 85 (2007). https://doi.org/10.1016/j.memsci.2007.06.009
  30. J.-Q. Liu, Z.-L. Xu, X.-H. Li, Y. Zhang, Y. Zhou, Z.-X. Wang, and X.-J. Wang, An improved process to prepare high separation performance PA/PVDF hollow fiber composite nanofiltration membranes, Sep. Purif. Technol., 58, 53 (2007). https://doi.org/10.1016/j.seppur.2007.07.009
  31. S. Yu, Y. Zheng, Q. Zhou, S. Shuai, Z. Lü, and C. Gao, Facile modification of polypropylene hollow fiber microfiltration membranes for nanofiltration, Desalination, 298, 49 (2012). https://doi.org/10.1016/j.desal.2012.04.027
  32. S. Yu, Z. Chen, Q. Cheng, Z. Lü, M. Liu, and C. Gao, Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions, Sep. Purif. Technol., 88, 121 (2012). https://doi.org/10.1016/j.seppur.2011.12.024
  33. J. Mo, J.-E. Hwang, J. Jegal, K.-H. Lee, and J. Kim, Treatment of Dyeing Wastewater Using Polyamid Ro-Membranes After the Pretreatment with Chemical Coagulants, Membrane Journal, 14, 230 (2004).
  34. I.-C. Kim and K.-H. Lee, Preparation of poly(vinyl alcohol)-coated Composite Nanofiltration Membranes on Various Support Membranes, Membrane Journal, 15, 34 (2005).
  35. I.-C. Kim and K.-H. Lee, Performance of Annealed Polyacrylonitrile Nanofiltration Membrane, Membrane Journal, 15, 15 (2005).
  36. R. M. Abhang, K. S. Wani, V. S. Patil, B. L. Pangarkar, and S. B. Parjane, Nanofiltration for Recovery of Heavy Metal Ions from Waste Water-A Review, I. J. Res. Environ. Sci. and Tech., 3, 29 (2013).
  37. M. Frank, G. Bargeman, A. Zwijnenburg, and M. Wessling, Capillary hollow fiber nanofiltration membranes, Sep. Purif. Technol., 22, 499 (2001).
  38. L. Shao, X. Q. Cheng, Y. Liu, S. Quan, J. Ma, S. Z. Zhao, and K. Y. Wang, Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal, J. Membr. Sci., 430, 96 (2013). https://doi.org/10.1016/j.memsci.2012.12.005
  39. W. Fang, L. Shi, and R. Wang, Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening, J. Membr. Sci., 430, 129 (2013). https://doi.org/10.1016/j.memsci.2012.12.011
  40. W.-J. Lau and A. F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control-a review, Desalination, 245, 321 (2009). https://doi.org/10.1016/j.desal.2007.12.058
  41. 임대우, 김순식, 김권일, 윤영서, 폴리아미드계 나노복합막의 제조 방법, 대한민국 특허 1019960006279 (1996).
  42. 이규호, 제갈종건, 오남운, 폴리아크릴로니트릴을 이용한 나노복합막의 제조방법, 대한민국 특허 1020010001398 (2001).
  43. Global Industry Analysts, Inc., Membrane separation technologies, (2009).
  44. A. A. Hussain and A. E. Al-Rawajfeh, Recent Patents of Nanofiltration Applications in Oil Processing, Desalination, Wastewater and Food Industries, Recent Patant on Chemical Engineering, 2, 51 (2009). https://doi.org/10.2174/2211334710902010051
  45. J. Luo and Y. Wan, Effects of pH and salt on nanofiltration-a critical review, J. Membr. Sci., 438, 18 (2013). https://doi.org/10.1016/j.memsci.2013.03.029