• Title/Summary/Keyword: nanofat

Search Result 3, Processing Time 0.014 seconds

Lipoinjection with Adipose Stem Cells for Nasal Modeling: Rhino Cell, a Highly Versatile Alternative

  • Yanko Castro-Govea;Jorge A. Garcia-Garza;Sergio E. Vazquez-Lara;Cynthia M. Gonzalez-Cantu;Hernan Chacon-Moreno;Víctor H. Cervantes-Kardasch
    • Archives of Plastic Surgery
    • /
    • v.50 no.4
    • /
    • pp.335-339
    • /
    • 2023
  • It is undeniable that a significant number of patients who want to improve their facial appearance is increasingly interested in nonsurgical procedures. Without a doubt, the use of autologous fat could not be left out as a magnificent alternative for nasal modeling simply because of four influential factors: ease of collection, compatibility, the temporality of the results, and safety. This work describes an innovative alternative technique for nasal modeling using micrografts enriched with adipose-derived mesenchymal stem cells (ASCs). With this technique, fat was collected and divided into two samples, nanofat and microfat. Nanofat was used to isolate the ASCs; microfat was enriched with ASCs and used for nasal modeling. Lipoinjection was performed in a supraperiosteal plane on the nasal dorsum. Through a retrolabial access, the nasal tip and base of the columella were lipoinjected. We consider that nonsurgical nasal modeling using micrografts enriched with ASCs can be an attractive and innovative alternative. This technique will never be a substitute for surgical rhinoplasty. It can be performed in a minor procedure area with rapid recovery and return to the patient's daily activities the next day. If necessary, the procedure can be repeated.

Use of platelet-rich plasma and modified nanofat grafting in infected ulcers: Technical refinements to improve regenerative and antimicrobial potential

  • Segreto, Francesco;Marangi, Giovanni Francesco;Nobile, Carolina;Alessandri-Bonetti, Mario;Gregorj, Chiara;Cerbone, Vincenzo;Gratteri, Marco;Caldaria, Erika;Tirindelli, Maria Cristina;Persichetti, Paolo
    • Archives of Plastic Surgery
    • /
    • v.47 no.3
    • /
    • pp.217-222
    • /
    • 2020
  • Background Surgical reconstruction of chronic wounds is often infeasible due to infection, comorbidities, or poor viability of local tissues. The aim of this study was to describe the authors' technique for improving the regenerative and antimicrobial potential of a combination of modified nanofat and platelet-rich plasma (PRP) in nonhealing infected wounds. Methods Fourteen patients met the inclusion criteria. Fat tissue was harvested from the lower abdomen following infiltration of a solution of 1,000 mL of NaCl solution, 225 mg of ropivacaine, and 1 mg of epinephrine. Aspiration was performed using a 3-mm cannula with 1-mm holes. The obtained solution was decanted and mechanically emulsified, but was not filtered. Non-activated leukocyte-rich PRP (naLR-PRP) was added to the solution before injection. Patients underwent three sessions of injection of 8-mL naLR-PRP performed at 2-week intervals. Results Thirteen of 14 patients completed the follow-up. Complete healing was achieved in seven patients (53.8%). Four patients (30.8%) showed improvement, with a mean ulcer width reduction of 57.5%±13.8%. Clinical improvements in perilesional skin quality were reported in all patients, with reduced erythema, increased thickness, and increased pliability. An overall wound depth reduction of 76.6%±40.8% was found. Pain was fully alleviated in all patients who underwent re-epithelization. A mean pain reduction of 42%±33.3% (as indicated by visual analog scale score) was found in non-re-epithelized patients at a 3-month follow-up. Conclusions The discussed technique facilitated improvement of both the regenerative and the antimicrobial potential of fat grafting. It proved effective in surgically-untreatable infected chronic wounds unresponsive to conventional therapies.