• Title/Summary/Keyword: nanoemulsion

Search Result 70, Processing Time 0.022 seconds

Preparation and Stability of Capsaicin-loaded Nanoemulsions by Microfluidazion (미세유동화법으로 제조한 캡사이신 함유 나노에멀션의 안정성)

  • Kim, Min-Ji;Lee, Soo-Jeong;Kim, Chong-Tai
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.985-997
    • /
    • 2016
  • The objectives of this study, which filled gaps in previous studies, were: (1) to find the optimal mixing condition of nanoemulsions containing oleoresin capsicum (OC), Tween 80, propylene glycol (PG), and sucrose monostearate (SES) by microfluidization; (2) to investigate their properties and stability depending on such factors as pH, temperature, and heating time; (3) to measure the effect of adding ascorbic acid. In order to test these objectives, the following three experiments were conducted: Firstly, in order to find the optimal mixing ratio, nanoemulsions containing OC - the mean diameter of which is smaller than 100 nm - were prepared through the process of microfluidization; and their mean particle size, zeta potential, and capsaicinoids were measured. The test results indicated that the mixing ratio at OC : Tween 80 : PG + water(1:2) = 1 : 0.2 : 5 was optimal. Secondly, the properties and stability of nanoemulsions were investigated with varying parameters. The test results illustrated that single-layer nanoemulsions and double-layer nanoemulsions coated with alginate were stable, irrespective of all the parameters other than/except for pH 3. Thirdly, the properties of nanoemulsions were then analyzed according to the addition of ascorbic acid. The results demonstrated that the properties of single-layer nanoemulsions were not affected by addition of ascorbic acid. In case of alginate double-layer nanoemulsions, the particle size was reduced, and zeta potential increased with the addition of ascorbic acid. In conclusion, the demonstrated stability of various nanoemulsions under the different conditions in the present study suggests that these findings may constitute a basis in manufacturing various food-grade products which use nanoemulsions-and indicate that food nanoemulsions, if adopted in the food industry, have the potential to satisfy both the functionality and acceptability requirements necessary to produce commercially marketable food-grade products.

Application of Nanoemulsions upon Type of Cosmetic Oils for Convergence Type of Cosmetics (화장품용 오일 타입에 따른 나노에멀젼의 융복합 화장품 적용)

  • Cho, Wan-Goo
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • In this study, the formation potential and the stability of nano-emulsions were evaluated according to the structure of various cosmetic oils in Tween 80/Span 80 system using PIC method at 80 oC LP 70, Isopar H and Pripure 3759 of hydrocarbons were both form a stable nano-emulsion, particle size distribution of about 40 nm. A linear structure of silicone oil formed an unstable emulsion, but cyclic or short chain oil formed was a stable nano-emulsion. In ester oils, the particle size of emulsions increases with increasing molecular weight of oils and a stable nano-emulsion could not be obtained in the molecular weight of about 450. The particle size of the nano-emulsion against required HLB value for calculating in consideration of the lipophilic and hydrophilic oil was smaller in the HLB of 8-10.

Development of trans-cinnamaldehyde self-microemulsifying drug delivery system(SMEDDS) with superior stability (안정성이 우수한 신남알데히드 자가미세유화 약물전달시스템 개발)

  • Bang, Kyu-Ho;Kim, Kyeong Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.555-562
    • /
    • 2019
  • This study was undertaken to develop a stable self-microemulsifying drug delivery system (SMEDDS) for trans-cinnamaldehyde, a known antibacterial and antifungal agent. A simultaneous analytical method was established for quantification of trans-cinnamaldehyde and its degradant, cinnamic acid. Various surfactants were applied to assess their effect on the aqueous solubility of trans-cinnamaldehyde, and pseudo-ternary phase diagrams were plotted. Of the various formulations tested, the liquid SMEDDS composed of trans-cinnamaldehyde (oil), Cremophor EL (surfactant) and Transcutol P (cosurfactant) at a volume ratio of 10/70/20, produced the smallest emulsion droplet size (around 23 nm). The stability test determined the superior stability of the trans-cinnamaldehyde SMEDDS with constant trans-cinnamaldehyde content and z-average diameter of emulsion, under accelerated and heat stressed condition. Thus, we believe that this novel trans-cinnamaldehyde SMEDDS formulation has the potential to be applied for the development of trans-cinnamaldehyde medicines in the pharmaceutical industry.

Antimicrobial Activity of Lavander and Rosemary Essential Oil Nanoemulsions (라벤더와 로즈마리 에센셜 오일 나노에멀션의 항균 활성)

  • Kim, Min-Soo;Lee, Kyoung-Won;Park, Eun-Jin
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.256-263
    • /
    • 2017
  • Purpose: Essential oils are secondary metabolites of herbs and have antibacterial activities against foodborne pathogens. However, their applications for food protection are limited due to the hydrophobic and volatile natures of essential oils. Methods: In this study, essential oil nanoemulsions of rosemary and lavender were formulated with non-ionic surfactant Tween 80 and water using ultrasonic emulsification, and their antibacterial effects were determined. Results: The antibacterial activities of nanoemulsions were evaluated against 12 strains of 10 bacterial species, and significant antibacterial effects were observed against four Gram-positive and four Gram-negative bacteria but not against Streptococcus mutans and Shigella sonnei. In the disc diffusion test, the diameter of the inhibition zone proportionally increased with the concentration of nanoemulsions. Using cell turbidity measurement, minimum bactericidal concentration (MBC) of the nanoemulsions, which is the lowest concentration reducing viability of the initial bacterial inoculum by ${\geq}99.9%$, was significantly higher than the minimum inhibitory concentration (MIC) of the nanoemulsions. The largest bactericidal effects of lavender and rosemary essential oil nanoemulsions were observed against S. enterica and S. aureus, respectively. Conclusion: Nanoemulsion technique could improve antibacterial activity of essential oil nanoemulsions by increasing the solubility and stability of essential oils. Our findings shed light on the potential use of essential oil nanoemulsions as an alternative to chemical sanitizers in food protection.

Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases

  • Abdullahi, Adamu;Ahmad, Khairulmazmi;Ismail, Intan Safinar;Asib, Norhayu;Haruna, Osumanu;Abubakar, Abubakar Ismaila;Siddiqui, Yasmeen;Ismail, Mohd Razi
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.515-535
    • /
    • 2020
  • Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.

Influence of antioxidants on β-carotene degradation in nanoemulsions (나노에멀션 내의 베타카로텐 분해에 미치는 산화방지제의 영향)

  • Park, Jun-Kyu;Kwon, Yun-Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.324-330
    • /
    • 2018
  • In this study, we examined the effects of carrier oil type (MCT oil: MO, corn oil: CO, palm oil: PO), pH of dispersion solution, and antioxidants on the chemical degradation of ${\beta}$-carotene in oil-in-water nanoemulsions. The pH of the emulsion had a significant influence on the stability of ${\beta}$-carotene, which showed rapid degradation in emulsions at low pH value and relatively higher stability at high pH values. The influence of the carrier oil type on ${\beta}$-carotene stability was assessed. The rate of ${\beta}$-carotene degradation increased in the following order: CO > PO > MO. The effect of antioxidants on ${\beta}$-carotene degradation was monitored during storage at $25^{\circ}C$ for 4 weeks. The rate of ${\beta}$-carotene degradation decreased upon addition of water-soluble (ascorbic acid) or oil-soluble (tocopherol) antioxidants. In general, tocopherol was more effective than ascorbic acid in reducing ${\beta}$-carotene degradation. To utilize this nanoemulsion for producing acidic beverages, adding a higher concentration of antioxidants is required.

Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q10

  • Ha, Ho-Kyung;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1294-1304
    • /
    • 2018
  • The aims of this research were to examine the effect of heating temperature (65, 75, and $85^{\circ}C$) and $CaCl_2$ concentration level (3, 4, and 5 mM) on the physicochemical properties of ${\beta}$-lactoglobulin (${\beta}$-lg) nanoemulsions (NEs) and to study how the droplet size of NEs affects the bioaccessibility (BA) of coenzyme $Q_{10}$ ($CoQ_{10}$). The droplet size of NEs and BA of $CoQ_{10}$ was assessed by particle size analyzer and UV-Vis spectrophotometer, respectively. An increase in heating temperature and $CaCl_2$ concentration level resulted in a significant (p<0.05) increase in the droplet size of NEs while there were no significant differences in polydispersity index and zeta-potential of NEs. When NEs containing $CoQ_{10}$ were incubated in simulated small intestinal phases, an increase in the droplet size and polydispersity index of NEs was observed. This indicated that NEs were not stable in small intestine and digestion of NEs occurred. As heating temperature and $CaCl_2$ concentration level were decreased, a significant (p<0.05) increase in BA of $CoQ_{10}$ was observed. There was a significant (p<0.05) increase in BA of $CoQ_{10}$ with a decrease in the droplet size of NEs. In conclusion, heating temperature and $CaCl_2$ concentration level were key-parameters affecting the initial droplet size of NEs and BA of $CoQ_{10}$ was negatively correlated with initial droplet size of NEs.

Screening of nanoemulgels for physicochemical stability and antifungal efficacy

  • Andleeb Fatima;Muhammad Naeem Aamir;Shahiq-Uz-Zaman;Masood-Ur-Rehman;Zeeshan Javaid;Keng Wooi Ng;Hina Hussain;Muhammad Asif
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.593-600
    • /
    • 2024
  • The nanoemulgel was prepared to induce a synergistic effect along with higher efficacy. Nine sets of macroemulsion were made in which liquid paraffin was stabilized by the two non-ionic surfactants, Tween® 80 and Span® 80. Comparative stability analysis of the macroemulsions was used to determine the effective surfactant concentrations that gave the most stable systems (NE 2, NE3, NE4, NE5). High-speed homogenization was then applied. The final formulation was evaluated for globule size and polydispersablity index, physical properties (color, homogeneity, consistency, syneresis), pH, viscosity, spreadability with 200 g and 500 g weight, conductivity, drug content, stability, skin irritation, antifungal efficacy. Zeta size analysis confirmed the nanosize of the droplets in NE2 (284.8 nm), NE3 (79.89 nm), NE4 (194 nm) but not NE5 (632.8 nm), which was outside the nanoemulsion range. The antifungal assay exhibited zone of inhibition for NE3 (43±1.0 mm) and NE4 (42±1.7 mm), a marketed cream (33±1 mm), fluconazole alone (35±1 mm) and terbinafine alone (35.0±1.7 mm). The zone of inhibition of nanoemulgels increased compared with the drugs when used individually and when compared a placebo.

Stabilization of Tocopheryl Acetate of Swollen Micelle by Poloxamer (Poloxamer를 이용한 Swollen Micelle의 Tocopheryl Acetate 안정화)

  • Kim, Mi-Seon;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.609-622
    • /
    • 2019
  • When the surfactant is dissolved in an aqueous solution, it forms aggregate called micelles (<20 nm) in the solution, and micelles can form the solubilized formulation by supporting the active ingredient therein. Swollen micelles are formulations capable of carrying larger amounts of active ingredient than conventional solubilized formulations at 50~100 nm. Unlike liposomes or nanoemulsions, which require a separate process such as high pressure emulsification, Swollen micelle is a more efficient method of solubilization and particle formation from a productive point of view. In this study, stabilization experiments on swollen micelle formulations were carried out using poloxamer 407, and then optimized formulation experiments for tocopheryl acetate components were performed using Response Surface Methodology (RSM). Tocopheryl acetate, a surfactant that affects solubilization and an active substance, were set as a factor and the correlation between them was confirmed. As the evaluation method, stability and particle size distribution and size were confirmed by temperature and time, and the structure and shape of the swollen micelle carrying the active ingredient were confirmed by FIB. These results show that poloxamer 407 0.500%, octyldodeceth-16 0.387% and tocopheryl acetate 0.945% are the most optimized prescriptions for swollen micelle stabilized with tocopheryl acetate.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.