• Title/Summary/Keyword: nanodiamond

Search Result 30, Processing Time 0.024 seconds

Comparative Analyses of Commercial Detonation Nanodiamonds

  • Puzyr, A.P.;Burova, A.E.;Bondar, V.S.;Rhee, C.K.;Rhee, W.H.;Hwang, K.C.
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.297-302
    • /
    • 2011
  • Colloidal stability is one of crucial factors for many applications of nanodiamond. Despite recent development, nanodiamonds available on the market often exhibit a high impurity content, wide size distribution of aggregates and low resistance to sedimentation. In the current study, four commercial nanodiamond powders synthesized by detonation synthesis were surface modified and then separated with respect to the size into six fractions by centrifugation. The fractions were evaluated by zeta potential, particle size distribution and elemental composition. The results showed that the modified nanodiamonds form stable colloidal suspensions without sedimentation for a long time.

Thermal Oxidative Purification of Detonation Nanodiamond in a Gas-Solid Fluidized Bed Reactor

  • Lee, Jae Hoon;Youn, Yong Suk;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.738-751
    • /
    • 2018
  • The effect of the reaction temperature and reaction time on the thermal oxidative purification quality of detonation nanodiamond (NDsoot) was investigated in a gas-solid fluidized bed reactor of a $0.10m-ID{\times}1.0m$-high stainless steel column with zirconia beads ($d_{SV}=99.2{\mu}m$). The carbon conversion increased with increasing the reaction temperature; however, when the reaction temperature was greater than 773 K, the carbon conversion did not increase. The content of $sp^3$-hybridized carbon at the reaction temperature of 703 K barely changed when the reaction time was more than 30 minutes, but at 773 K, the content decreased as preferred. At 703 K, the purification quality increased with the increasing reaction time; however, at 773 K, the purification quality increased up to 30 minutes and then decreased rapidly.

Dispersion of nanodiamond by Chemical treatment (나노다이아몬드의 화학적 처리에 따른 분산 특성)

  • Park, Jong-Soon;Kim, Hong;Kang, Soon-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.999-1004
    • /
    • 2011
  • In this study, nanodiamod's surface have formed carboxyl, hydroxyl, amine radical for the purpose of use of nanodiamond synthesized by detonation, and then it has widely stable dispersion and slowly sedimentation in solvent. Thus nanodiamonds obtained by chemical treatment were used to analyze the structure, surface statement, particle size and sedimentation specification in solvent for method X-ray diffration(XRD), scanning electron microscope energy diffraction spectroscopy(SEM-EDS), Fourier transform infrared spectroscopy (FTIR), automic force microscope(AFM).

Dispersion Behavior and Size Analysis of Thermally Purified High Pressure-high Temperature Synthesized Nanodiamond Particles

  • Kwon, Hansang;Park, Jehong;Leparoux, Marc
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heat-treatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heat-treated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.

Combustion characteristics of nanodiamond synthesized by detonation (나노다이아몬드가 첨가된 오일과 수용액의 점도 및 윤활 특성)

  • Kang, Soon-Kook;Park, Jong-Soon;Park, Yeang-Moon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.1059-1062
    • /
    • 2009
  • 폭발법에 의하여 얻어진 나노다이아몬드는 흑연상의 탄소를 일정 부분 갖으면서도 천연다이아몬드와 유사하게 높은 경도와 내마모 특성을 갖는 것으로 알려져 있으며, 흑연은 고온에 견디는 고체 윤활제로 사용되어 왔다. 따라서 나노다이아몬드를 오일과 물에 첨가하면서 용액의 점도 변화와 윤활 특성을 조사하였다. Fig. 2와 같이 3%(w/v)까지는 점도가 선형적으로 증가하는 것으로 나타났다.

  • PDF

Cut off effect on UV of nanodiamond (나노 다이아몬드의 UV차단 효과)

  • Kang, Soon-Kook;Chung, Myung-Kiu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1112-1114
    • /
    • 2010
  • 대기 영역을 통과한 UV는 인간과 자연 환경 및 재료 등의 합성 물질에 대해 심각한 피해를 유발할 수 있다. 폭발과 산처리된 나노 다이아몬드 표면의 곁가지 결합인 $Sp^2$ 결합체 내의 알킬기에 의한 광흡수 및 산란으로 UV을 차단할 수 있다. 본 연구에서는 폭발 및 산처리 다이아몬드와 나노급 흑연의 농도, 조성에 따른 수용성 현탁액에 의한 차외선 차단 효과를 조사하였다.

  • PDF

Surface Properties of Detonation and Acidic Nanodiamond (폭발 및 산처리 나노 다이아몬드의 표면 특성)

  • Kang, Soon-Kook;Park, Jong-Soon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1108-1111
    • /
    • 2010
  • 고온 고압 조건하에서 합성된 나노 다이아몬드는 비평형의 고속 생성조건으로 인하여 특이한 물리화학적 구조와 광학적 특성을 나타내는 최근의 신물질이다. 본 연구에서는 본 XRD, EDS, FTIR, 라만 분광기, DSC, BET 및 AFM의 분석장치를 이용하여 폭발 및 산처리 나노 다이아몬드의 표면 특성을 조사하고자 한다.

  • PDF

Enhanced nucleation density by heat treatment of nanodiamond seed particles (나노다이아몬드 seed 입자의 열처리에 의한 핵형성 밀도 향상)

  • Park, Jong Cheon;Jeong, Ok Geun;Son, Bit Na;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.291-295
    • /
    • 2013
  • Surface chemical modification via air and hydrogen heat treatment was found to relieve the aggregation of nanodiamond (ND) seed particles and lead to a significantly enhanced nucleation density for ultrananocrystalline diamond (UNCD) film growth. After heat treatment in air and hydrogen, modification of surface functionalities and increase in the zeta potential were observed. Mean size of the ND aggregates was also dramatically reduced from ${\sim}2{\mu}m$ to ~55 nm. Si surface seeded with ND particles heat-treated at $600^{\circ}C$ in hydrogen produced a much higher nucleation density of ${\sim}2.7{\times}10^{11}cm^{-2}$ compared to untreated ND seeds.

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.