• 제목/요약/키워드: nanocomposite reinforcement

검색결과 49건 처리시간 0.019초

고분자-점토 나노복합체에 관한 계면활성제의 개질 영향 (Modified Effects or Surfactants with Polymer-Clay Nanocomposites)

  • 김홍운;방윤혁;최수명;임경희
    • 한국응용과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.290-299
    • /
    • 2006
  • This article investigated to polymer-clay nanocomposite, especially in interfacial respect clay structure, its dispersion into polymer matrix, and clay modification is studied. The cationic exchange of surfactants with clay gallery results in preparing organo-clay capable of compatiblizing to monomer or polymer and increasing interlayer adhesion energy due to expansion of interlayer spacing. The orientation of surfactant in clay gallery is affected by chemical structure and charge density of clay, and interlayer spacing and volume is increased with alkyl chain length of surfactant, or charge density of clay. Also, the interaction between clay and polymer in preparing polymer-clay nanocomposite is explained thermodynamically. In the future, the study and development of polymer-clay nanocomposite is paid attention to the interfacial adhesion, clay dispersion within polymer, mechanism of clay intercalation or exfoliation.

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites

  • Fattahi, A.M.;Safaei, Babak;Qin, Zhaoye;Chu, Fulei
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.177-187
    • /
    • 2021
  • The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young's modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.

Polyethylene/Montmorillonite Nanocomposite의 난연성 평가 (Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite)

  • 송영호;정국삼
    • 한국화재소방학회논문지
    • /
    • 제20권4호
    • /
    • pp.72-76
    • /
    • 2006
  • 고분자/점토의 nanocomposite는 고분자에 소량의 점토를 첨가해도 물리적, 기계적, 열적 특성이 증가하기 때문에 최근 이에 관련된 연구가 증가되고 있다. 특히 montmorillonite(MMT)와 같은 smectite 계열의 점토는 높은 종횡비, 판형의 층상구조, 경제성 때문에 산업적으로 이용가치가 많다고 할 수 있다. 본 연구에서는 PE/MMT nanocomposite는 고분자를 용융시킨 후 점토를 삽입하여 시편을 제조하였다. 나노입자의 구조는 XRD 및 TEM을 이용하여 확인하였고, 난연성은 LOI, 탄화층 생성량, 연기중량농도의 측정을 통하여 검토하였다. 또한 PE/MMT nanocomposite의 열적 안정성은 DTG-DTA 분석을 통하여 검토하였다. 그 결과 종래의 화합물보다 그 특성이 보강되었다. 난연성은 연소시 탄화층 형성에 의하여 증가 되었음을 확인할 수 있었다.

초음파 혼합에 근거한 에폭시 나노복합체의 제조와 특성 (Synthesis and Characterization of Epoxy Based Nanocomposite Materials Using an Ultrasonicator)

  • 이도영;박경문;박윤국
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.945-948
    • /
    • 2008
  • 나노복합체는 높은 기계적 강도, 내열성, 그 밖의 많은 장점들로 인하여 첨가제에 따라 자동차, 우주항공 그리고 생체분야에 응용되어 사용되어지고 있다. 클로자이트(Cloisite) 15A 존재하의 에폭시 수지를 바탕으로 한 나노복합체를 합성하고 TEM, XRD, TGA, 그리고 DMA 등을 이용하여 분석하였다. 첨가제로 사용된 클레이의 층간간격(d-space)의 영향을 알아보기 위하여 클로자이트 20A 존재 하에서도 비슷한 나노복합체를 합성하였다. 나노복합체의 제조 시에 전통적으로 이용되어져온 핫플레이트와 자석을 이용한 제조법이외에도 초음파를 이용하여 나노복합체를 제조하였으나 두 경우 모두 나노복합체의 구조가 삽입형 구조를 얻어 구조면에서의 혼합의 영향이 없었다. 클레이가 존재하지 않았을 때에 비하여 5 wt%의 클로자이트 15A 존재 하에서 20분간 초음파로 혼합시의 복합체의 저장 탄성률이 10% 증가됨을 보였다. 일반적으로 클로자이트 15A 존재 하에서의 복합체가 클로자이트 20A 존재 하에서의 복합체보다 좋은 저장 탄성률을 보였다.

분자수준 혼합공정을 이용한 탄소나노튜브/Cu 나노복합재료의 제조 및 특성평가 (Fabrication and Characterization of Carbon Nanotube/Cu Nanocomposites by Molecular Level Mixing Process)

  • 김경태;차승일;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2005
  • Since the first discovery of carbon nanotube (CNT) in 1991, a window to new technological areas has been opened. One of the emerging applications of CNTs is the reinforcement of composite materials to overcome the performance limits of conventional materials. However, because of the difficulties in distributing CNTs homogeneously in metal or ceramic matrix by means of traditional composite processes, it has been doubted whether CNTs can really reinforce metals or ceramics. In this study, CNT reinforced Cu matrix nanocomposite is fabricated by a novel fabrication process named molecular level mixing process. This process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows to be 3 times higher strength and 2 times higher Young’s modulus than Cu matrix. This extra-ordinary strengthening effect of carbon nanotubes in metal is higher than that of any other reinforcement ever used for metal matrix composites.

  • PDF

The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells

  • Khayat, Majid;Baghlani, Abdolhossein;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.47-66
    • /
    • 2021
  • This work addresses the free vibration analysis of Functionally Graded Porous (FGP) nanocomposite truncated conical shells with Graphene PLatelet (GPL) reinforcement. In this study, three different distributions for porosity and three different dispersions for graphene platelets have been considered in the direction of the shell thickness. The Halpin-Tsai equations are used to find the effective material properties of the graphene platelet reinforced materials. The equations of motion are derived based on the higher-order shear deformation theory and Sanders's theory. The Fourier Differential Quadrature (FDQ) technique is implemented to solve the governing equations of the problem and to obtain the natural frequencies of the truncated conical shell. The combination of FDQ with higher-order shear deformation theory allows a very accurate prediction of the natural frequencies. The precision and reliability of the proposed method are verified by the results of literature. Moreover, a wide parametric study concerning the effect of some influential parameters, such as the geometrical parameters, porosity distribution, circumferential wave numbers, GPLs dispersion as well as boundary restraint conditions on free vibration response of FGP-GPL truncated conical shell is also carried out and investigated in detail.

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Properties and particles dispersion of biodegradable resin/clay nanocomposites

  • Okada, Kenji;Mitsunaga, Takashi;Nagase, Youichi
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2003
  • In this study, two types of biodegradable resins-based clay nanocomposites, in which organic montmorillonite clay was filled, were prepared by the direct melt blending method. In order to characterize the nanocomposite structure, wide-angle X-ray diffraction (WAXD) and TEM observation were performed. Characterization of the nanocomposites shows that intercalated and partially exfoliated structures were generated by the melt blending method. Mechanical and rheological properties of the nanocomposites were measured respectively. For the mechanical properties, there were improvements in tensile strength and Young's modulus of the nanocomposites due to the reinforcement of nanoparticles. The rheological behaviors of the nanocomposites were significantly affected by the degree of the dispersion of the organoclay. The storage modulus of the nanocomposites was measured and the degree of the dispersion of the organoclay was evaluated from the value of the terminal slope of the storage modulus. In addition, the quantity of the shear necessary for making the nanocomposite for melt intercalation method was estimated from the relationship between the value of the terminal slope of the storage modulus and the applied shear.

Poly(ethylene terephthalate)(PET) Nanocomposites Filled with Fumed Silicas by Melt Compounding

  • Chung, Su-Chul;Hahm, Wan-Gyu;Im, Seung-Soon;Oh, Seong-Geun
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.221-229
    • /
    • 2002
  • PET nanocomposites filled with fumed silicas were prepared via direct melt compounding method at various mixing conditions such as filler type and filler content. Some fumed silicas were pre-treated to improve the wettability and dispersibility, and principal characterizations were performed to investigate the effects of nano fumed silicas on polymer matrix. Hydrophobic fumed silica (M-FS), which has the similar contact angles of water with neat PET, acted as the best reinforcement for the thermal stability and mechanical properties of PET nanocomposite, and FE-SEM images also showed that M-FS was uniformly dispersed into matrix and had good wettability. But, some filler (O-FS) had low dispersibility and caused the deterioration of mechanical properties. Besides, the results of DSC revealed the nucleation effect of all fillers in polymer matrix, and PET nanocomposite filled with hydroptilic fumed silica (FS) showed markedly the characteristic dynamic rheological properties such as shear thinning behavior at very low frequencies and the decrease of viscosity.