• Title/Summary/Keyword: nanocomposite plate

Search Result 64, Processing Time 0.017 seconds

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles

  • Taherifar, Reza;Mahmoudi, Maryam;Nasr Esfahani, Mohammad Hossein;Khuzani, Neda Ashrafi;Esfahani, Shabnam Nasr;Chinaei, Farhad
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this paper, buckling analyses of composite concrete plate reinforced by piezoelectric nanoparticles is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite concrete plate. The nano composite concrete plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of concrete plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of piezoelectric nanoparticles volume percent, geometrical parameters of concrete plate and elastic foundation on the buckling load are investigated. Results showed that with increasing Piezoelectric nanoparticles volume percent, the buckling load increases.

Characteristics of diamond-like nanocomposite films grown by plasma enhanced chemical vapor deposition (플라즈마 화학기상증착에 의해 성장된 유사 다이아몬드 나노복합체 박막의 특성 평가)

  • 양원재;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • The diamond-like nanocomposite (DLN) thin films were deposited on Si substrates using $CH_4/(C_2H_5O)_4Si/H_2$/Ar gas mixtures as source gases by the plasma enhanced chemical vapor deposition (PECVD). The chemical structure and microstructure of grown films were investigated and their tribological properties were evaluated by a ball-on-plate type tribometer. The deposited DLN films mainly consisted of diamond-like a-C:H and quartz-like a-Si:O networks. The DLN films had a good agreement with tribological coating applications due to their extremely low friction coefficients and low wear rates.

A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles (압전 및 비압전 폴리머와 BaTiO3 나노입자로 제조된 유-무기 압전 나노복합체의 발전성능 비교연구)

  • Hyeon, Dong Yeol;Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.119-125
    • /
    • 2019
  • Piezoelectric energy harvesting technology is attracting attention, as it can be used to convert more accessible mechanical energy resources to periodic electricity. Recent developments in the field of piezoelectric energy harvesters (PEHs) are associated with nanocomposites made from inorganic piezoelectric nanomaterials and organic elastomers. Here, we used the $BaTiO_3$ nanoparticles and piezoelectric poly(vinylidene fluoride) (PVDF) polymeric matrix to fabricate the nanocomposites-based PEH to improve the output performance of PEHs. The piezoelectric nanocomposite is produced by dispersing the inorganic piezo-ceramic nanoparticles inside an organic piezo-polymer and subsequently spin-coat it onto a metal plate. The fabricated organic-inorganic piezoelectric nanocomposite-based PEH harvested the output voltage of ~1.5 V and current signals of ~90 nA under repeated mechanical pushings: these values are compared to those of energy devices made from non-piezoelectric polydimethylsiloxane (PDMS) elastomers and supported by a multiphysics simulation software.

Synthesis and Characterization of Epoxy Based Nanocomposite Materials Using an Ultrasonicator (초음파 혼합에 근거한 에폭시 나노복합체의 제조와 특성)

  • Lee, Do Young;Park, Kyungmoon;Park, YoonKook
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.945-948
    • /
    • 2008
  • Nanocomposite materials provides efficient reinforcement, thermal endurance, and many other advantages depending on the additives used, with applications in the aerospace, automotive, and biomedical industries. Here, epoxy based nanocomposites were synthesized in the presence of Cloisite 15A and characterized with TEM, XRD, TGA, and DMA. To determine the effect of the clay d-spacing, Cloisite 20A was also used to synthesize the nanocompostes. In addition to the traditional hot plate method, an ultrasonicator was used to investigate the effect of different types of mixing on the properties of the nanocomposite; no significant effect was found. An examination of the nanocomposite morphology revealed that all the nanocomposites synthesized yielded an intercalated structure. When 5 wt% of Cloisite 15A was used with 20 min sonication time, the storage modulus increased 10% over the neat(no clay) nanocomposite. In general, the presence of Cloisite 15A produced a better storage modulus than Cloisite 20A.

Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories

  • Javani, Rasool;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.419-426
    • /
    • 2019
  • In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

Effect of Reactive Diluents on the AC Electrical Treeing in Epoxy/Nanosilicate Systems

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.77-80
    • /
    • 2014
  • The effect of reactive diluents on the ac electrical treeing in epoxy/nanosilicate systems was studied, in a needle-plate electrode geometry. Diglycidyl ether of bisphenol A (DGEBA) type epoxy was used as a base resin, and layered silicate was used as a nano-sized filler. Polyglycol (PG) or 1,4-butanediol diglycidyl ether (BDGE) was introduced as a reactive diluent to the DGEBA/nanosilicate system, in order to decrease the viscosity of the nanocomposite system. PG acted as a flexibilizer, and BDGE acted as a chain extender, after the curing reaction. To measure the treeing propagation rate, a constant alternating current (ac) of 10 kV/4.2 mm (60 Hz) was applied to the specimen, in a needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. When 10 kV/4.2 mm (60 Hz) was applied, the treeing propagate rate in the DGEBA system was $1.10{\times}10^{-3}$ mm/min, and that in the DGEBA/PG system was $1.05{\times}10^{-3}$ mm/min. As 1.5 wt% of nanosilicate was added to the DGEGA/PG system, the propagation rate was $0.33{\times}10^{-3}$ mm/min. This meant that the nano-sized layered silicates would act as good barriers to treeing propagation. The effect of chlorine content was also studied, and it was found that chlorine had a bad effect on the electrical insulation property of the epoxy system.

Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium

  • Barzoki, Ali Akbar Mosallaie;Loghman, Abbas;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.497-517
    • /
    • 2015
  • In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size effects of microplate are considered based on Eringen's nonlocal theory. Based on orthotropic Mindlin plate theory along with von K$\acute{a}$rm$\acute{a}$n geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the buckling load.

Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs

  • Farokhian, Ahmad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.555-563
    • /
    • 2020
  • The objective of present paper is assessment of dynamic buckling behavior of an embedded sandwich microplates in thermal environment in which the layers are reinforced through functionally graded carbon nanotubes (FG-CNTs). Therefore, mixture rule is taken into consideration for obtaining effective material characteristics. In order to model this structure much more realistic, Kelvin-Voigt model is presumed and the sandwich structure is rested on visco-Pasternak medium. Exponential shear deformation theory (ESDT) in addition to Eringen's nonlocal theory are utilized to obtain motion equations. Further, differential cubature method (DCM) as well as Bolotin's procedure are used to solve governing equations and achieve dynamic instability region (DIR) related to sandwich structure. Different parameters focusing on volume percent of CNTs, dispersion kinds of CNTs, thermal environment, small scale effect and structural damping and their influences upon the dynamic behavior of sandwich structure are investigated. So as to indicate the accuracy of applied theories as well as methods, the results are collated with another paper. According to results, presence of CNTs and their dispersion kind can alter system's dynamic response as well.

Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets

  • Wei, Guohui;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.275-290
    • /
    • 2021
  • The main purpose of this research work is to investigate the critical buckling load of functionally graded (FG) porous plates with graphene platelets (GPLs) reinforcement using generalized differential quadrature (GDQ) method at thermal condition. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the plate thickness direction. Generally, the thermal distribution is considered to be nonlinear and the temperature changing continuously through the thickness of the nanocomposite plates according to the power-law distribution. To model closed cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme are used, through which mechanical properties of the structures can be extracted. Based on the third order shear deformation theory (TSDT) and the Hamilton's principle, the equations of motion are established and solved for various boundary conditions (B.Cs). The fast rate of convergence and accuracy of the method are investigated through the different solved examples and validity of the present study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns through the thickness, porosity coefficient and distribution of porosity on critical buckling load. Results reveal that the importance of thermal condition on of the critical load of FGP-GPL reinforced nanocomposite plates.