• Title/Summary/Keyword: nano-wire

Search Result 187, Processing Time 0.026 seconds

Fabrication of silicon nano-wire MOSFET photodetector for high-sensitivity image sensor (고감도 이미지 센서용 실리콘 나노와이어 MOSFET 광 검출기의 제작)

  • Shin, Young-Shik;Seo, Sang-Ho;Do, Mi-Young;Shin, Jang-Kyoo;Park, Jae-Hyoun;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • We fabricated Si nano-wire MOSFET by using the conventional photolithography with a $1.5{\mu}m$ resolution. Si nano-wire was fabricated by using reactive ion etching (RIE), anisotropic wet etching and thermal oxidation on a silicon-on-insulator (SOI) substrate, and its width is 30 nm. Logarithmic circuit consisting of a NMOSFET and Si nano-wire MOSFET has been constructed for application to high-sensitivity image sensor. Its sensitivity was 1.12 mV/lux. The output voltage swing was 1.386 V.

Surface Characteristics of Polymer Coated NiTi Alloy Wire for Orthodontics (폴리머 코팅된 NiTi합금 교정선의 표면특성)

  • Cho, Joo-Young;Kim, Won-Gi;Choi, Hwan-Suk;Lee, Ho-Jong;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.132-141
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate surface characteristics of polymer coated NiTi alloy wire for orthodontics using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with field emission scanning electron microscopy(FE-SEM), energy dispersive x-ray spectroscopy(EDS) and atomic force microscopy(AFM). The phase transformation of non-coated NiTi wire from martensite to austenite occurred at the range of $14{\sim}15^{\circ}C$, in the case of coated wire, it occurred at the range of $16{\sim}18^{\circ}C$. Polymer coating on NiTi wire surface decreased the surface defects such as scratch which was formed at severe machined surface. From the AFM results, the average surface roughness of non-coated and coated NiTi wire was 13.1 nm, and 224.5 nm, respectively. From convetional surface roughness test, the average surface roughness of non-coated and coated NiTi wire was $0.046{\mu}m$, and $0.718{\mu}m$, respectively.

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

Effect of Atmospheric Gas on the Size and Distribution of Cu Nano Powders Synthesized by Pulsed Wire Evaporation Method (전기 폭발법에 의해 제조된 나노 구리 분말의 크기와 분포에 미치는 조업 가스의 영향)

  • ;;;Y. A. Kotov
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • The possibility to decrease agglomeration of Cu nano powders and their separation during pulsed wire evaporation (PWE) process was investigated by controlling the working gas system, i.e., the design of the gas path, the type and pressure of the atmospheric gas. As a result, it was possible to choose the optimal design of the gas path providing large specific surface area and high degree of separation of the synthesized Cu nano powders. It was also shown that an Ar+10∼50$N_2$ mixture can be used in production of Cu nano powders, which do not react with nitrogen.

A Study on Optical Characteristic of Nano Metal Grid Polarizer Film with Different Deposition Thicknes (나노 금속 격자형 편광필름 제작에서 증착 두께에 따른 광 특성 연구)

  • Kim, Jiwon;Cho, Sanguk;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • In this study, we demonstrate the change of optical characteristic by thickness of metal deposition on nano metal grid polarizer film fabrication. Nano metal grid polarizer film consists of aluminium grid polarizer layer on PET (Polyethylene phthalate) substrate. We aim at metal grid layer formation for the large nano wire grid polarizer fabrication. we draw process conditions of the nano metal grid polarizer film fabrication to improve transmittance and extinction ratio and Nano wire grid polarizer film (NWGP) film is fabricated with 140 nm pitch, 70 nm width, and 70 nm depth of metal grid on optimum design conditions. As a result, we get high optical properties of nano wire grid polarizer which is the maximum transmittance of 80% and the extinction ratio of $10^6$ at 600 nm wavelength respectively.

Insulated, Passivated and Adhesively-Promoted Bonding Wire using Al2O3 Nano Coating

  • Soojae Park;Eunmin Cho;Myoungsik Baek;Eulgi Min;Kyujung Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • Bonding wires are composed of conductive metals of Au, Ag & Cu with excellent electrical conductivities for transmitting power and signals to wafer chips. Wire metals do not provide electrical insulation, adhesion promoter and corrosion passivation. Adhesion between metal wires is extremely weak, which is responsible for wire cut failures during thermal cycling. Organic coating for electrical insulation does not satisfy bondability and manufacturability, and it is complex to apply very thin organic coating on metal wires. Automotive packages require enhanced reliability of packages under harsh conditions. LED and power packages are susceptible to wire cut failures. Contrary to conventional OCB behaviors, forming gas was not required for free air ball formation for both Ag and Pd-coated Cu wires with Al2O3 passivation.

Fabrication of Cu-Zn Alloy Nano Powders by Wire Explosion of Electrodeposited Wires (도금선재의 전기선폭발을 이용한 Cu-Zn 합금 나노분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Yeul;Lee, Jae-Chun;Oh, Yong-Jun;Mun, Jeong-Il
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.38-43
    • /
    • 2007
  • Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of ${\alpha},{\beta},\;and\;{\gamma}$ phases while those from electroplated wires contained additional Zn-rich phases as ${\varepsilon}$, and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.

Transflective liquid crystal display with single cell gap and simple structure

  • Kim, Mi-Young;Lim, Young-Jin;Jeong, Eun;Chin, Mi-Hyung;Kim, Jin-Ho;Srivastava, Anoop Kumar;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • This work reports the simple fabrication of the single cell gap transflective liquid crystal display (LCD) using wire grid polarizer. The nano sized wire grid polarizer was patterned on common electrode itself, on the reflective part of FFS (Fringe field switching) mode whereas the common electrode was unpatterned at transmissive part. However, this structure didn't show single gamma curve, so we further improved the device by patterning the common electrode at transmissive part. As a result, V-T curve of proposed structure shows single gamma curve. Such a device structure is free from in-cell retarder, compensation film and reflector and furthermore it is very thin and easy to fabricate.

  • PDF

The Fabrication of Al-Cu Alloy Nano Powders by a New Method Combining Electrodeposition and Electrical Wire Explosion (전기도금법과 전기선폭발법을 이용한 Al-Cu 합금 나노분말제조)

  • Park Je-Shin;Suh Chang-Youl;Chang Han-Kwon;Lee Jae-Chun;Kim Won-Baek
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.187-191
    • /
    • 2006
  • Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and $CuAl_2$ were the major phases. As the Cu layer becomes thicker, Al diminished while $Al_4Cu_9$ phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.