• Title/Summary/Keyword: nano-size oxide powder

Search Result 93, Processing Time 0.022 seconds

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan;Palanisamy, Kuppan;venugopal, Potu;Sandeep, Eesam;Kumar, Karrothu Varun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Effect of Ambient Air Pressure on the Preparation of Cobalt Oxide Powder with Average Particle Size below 50 nm by Spray Pyrolysis Process (분무열분해 공정에 의한 평균입도 50 nm 이하의 코발트 산화물 분체 제조에 미치는 공기압력의 영향)

  • Kim, Dong Hee;Yu, Jae Keun
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2017
  • When the ambient air pressure was $0.1kg/cm^2$, there were few spherically formed droplets, which showed very badly fragmented state. The average particle size of the particles constituting the droplet was about 40 nm. When the air pressure increased to $0.5kg/cm^2$, the ratio of the spherical droplet forms increased, but still showed a state of severe disruption. The average particle size of the particles was reduced to about 35 nm. As the air pressure increased to $3kg/cm^2$, the ratio of spherical droplet form significantly increased, the degree of fragmentation even further decreased and the average particle size decreased to 30 nm. When the air pressure increased from 0.1 to $1kg/cm^2$, the XRD peak intensity showed little change, but the specific surface area was decreased. As the air pressure increased to $3kg/cm^2$, the intensity of XRD peaks showed a little decrease, while the specific surface area increased.

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

A Study on the Preparation of SiC Nano powder from the Si Waste of Solar Cell Industry (태양전지 산업(産業)에서 배출(排出)되는 Si waste로부터 SiC 분말 제조에 관한 연구(硏究))

  • Jang, Eun-Jin;Kim, Young-Hee;Lee, Yoon-Joo;Kim, Soo-Ryong;Kwon, Woo-Teck
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.44-49
    • /
    • 2010
  • SiC powders have been recovered from silicon-containing waste slurry by carbothermal reduction method with carbon black. Large amount of silicon-containing waste slurry is generated from Solar Cell industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the silicon waste is important. In this study, SiC powder recovered by the reaction ball-milled silicon powder from waste and carbon black at $1350^{\circ}C$ for 3h under vacuum condition. Physical properties of samples have been characterized using SEM, XRD, Particle size analyzer and FT-IR spectroscopy.

Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis (알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구)

  • Kang, Hee-Nam;Jeong, Dong Il;Kim, Young Il;Kim, In Yeong;Park, Sang Cheol;Nam, Cheol Woo;Seo, Seok-Jun;Lee, Jin Yeong;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2022
  • Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

Preparation of Gas Sensors with Nanostructured SnO2 Thick Films with Different Pd Doping Concetrations by an Ink Dropping Method

  • Yoon, Hee Soo;Kim, Jun Hyung;Kim, Hyun Jong;Lee, Ho Nyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Pd-doped $SnO_2$ thick film with a pure tetragonal phase was prepared on patterned Pt electrodes by an ink dropping method. Nanostructured $SnO_2$ powder with a diameter of 10 nm was obtained by a modified hydrazine method. Then the ink solution was fabricated by mixing water, glycerol, bicine and the Pd-doped $SnO_2$ powder. When the Pd doping concentration was increased, the grain size of the Pd-doped $SnO_2$ thick film became smaller. However, an agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The orthorhombic phase disappeared even at a low Pd doping concentration and a PdO peak was obtained for a high Pd doping concentration. The crack-free Pd-doped $SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of the patterned Pt electrodes by the optimized ink dropping method. The prepared 3 wt% Pd-doped $SnO_2$ thick films showed monoxide gas responses ($R_{air}/R_{CO}$) of 4.0 and 35.6 for 100 and 5000 ppm, respectively.

Synthesis and Crystal Structure Characterization of Ga2O3 Powder by Precipitation and Polymerized Complex Methods (침전법과 착체중합법을 이용한 Ga2O3 분말의 합성 및 결정구조 분석)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Han, Kyu-Sung;Kim, Jin-Ho;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • Gallium oxide ($Ga_2O_3$) powders were synthesized using a precipitation method and a polymerized complex method. TG-DSC, SEM, and XRD were performed to investigate the phase and morphology of the $Ga_2O_3$. In situ high-temperature XRD analysis revealed the crystal structure of $Ga_2O_3$ at different temperatures. The $Ga_2O_3$ obtained using the precipitation method and polymerized complex method were generally spherical-shaped particles and their average particle size was approximately 80 nm and $1{\mu}m$, respectively. The crystal structure of the $Ga_2O_3$ prepared by the precipitation method was changed from rhombohedral to monoclinic at $700^{\circ}C$, while monoclinic $Ga_2O_3$ was obtained directly from the precursor by the polymerized complex method.