A Study on the Preparation of SiC Nano powder from the Si Waste of Solar Cell Industry

태양전지 산업(産業)에서 배출(排出)되는 Si waste로부터 SiC 분말 제조에 관한 연구(硏究)

  • Jang, Eun-Jin (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Hee (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon-Joo (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo-Ryong (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo-Teck (Energy Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 장은진 (세라믹연구원 에너지소재센타) ;
  • 김영희 (세라믹연구원 에너지소재센타) ;
  • 이윤주 (세라믹연구원 에너지소재센타) ;
  • 김수용 (세라믹연구원 에너지소재센타) ;
  • 권우택 (세라믹연구원 에너지소재센타)
  • Received : 2010.08.13
  • Accepted : 2010.10.07
  • Published : 2010.10.30

Abstract

SiC powders have been recovered from silicon-containing waste slurry by carbothermal reduction method with carbon black. Large amount of silicon-containing waste slurry is generated from Solar Cell industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the silicon waste is important. In this study, SiC powder recovered by the reaction ball-milled silicon powder from waste and carbon black at $1350^{\circ}C$ for 3h under vacuum condition. Physical properties of samples have been characterized using SEM, XRD, Particle size analyzer and FT-IR spectroscopy.

태양전지산업으로부터 배출되는 Si waste로부터 탄소환원법을 사용하여 SiC 분말을 제조하였다. 태양광 산업의 실리콘 웨이퍼 가공 공정에서 다량의 실리콘 및 오일 포함된 폐액이 발생한다. 환경과 경제적인 측면에서 폐액으로부터 실리콘 성분을 재회수하는 기술의 개발은 매우 중요하다. 본 연구에서는 폐 실리콘를 milling하여 나노화한 후 카본 블랙과 혼합하고 진공분위기에서 $1,350^{\circ}C$로 열처리하여 100 nm크기의 균일한 입도를 갖는 SiC 분말을 제조하였다. 폐실리콘과 생성물의 물리적 특성을 SEM, XRD, 입도분석 그리고 원자 흡수 분광기를 사용하여 분석하였다.

Keywords

References

  1. 한국지질자원연구원, 2006: 반도체용 절단 슬러지로부터 고순도 실리콘 화합물 및 실리카 나노분말 제조 기술개발(2C-B-1-1), 21C 프론티어연구개발사업 보고서.
  2. Setiowati, U. and Kimura, S., 1997: Silicon carbide powder synthesis from silicon monoxide and methane, J. Am. Ceram. Soc., 80(3), pp.757-60. https://doi.org/10.1111/j.1151-2916.1997.tb02893.x
  3. Kevorkijan, V. M., Komac, M. and Kolar, D., 1992: Lowtemperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal $SiO_2$, J. Mater. Sci., 27(10), pp.2705-2712. https://doi.org/10.1007/BF00540693
  4. Krstic, V. D., 1992: Production of fine, high-purity beta silicon carbide powders, J. Am. Ceram. Soc., 75(1), pp.170-174. https://doi.org/10.1111/j.1151-2916.1992.tb05460.x
  5. Just, W., Muhlhoff, L., Scholz, Christoph and Weber, T., 1992: Epitaxially grown ${\beta}$-SiC on Si(100) and Si(111) substrates by low pressure chemical vapor deposition, Mater. Sci. Eng. B, 11(1-4), pp.317-319. https://doi.org/10.1016/0921-5107(92)90232-X
  6. Padture, N. P. and Lawn, B. R., 1994: Toughness properties of a silicon carbide with an in situ induced heterogeneous grain structure, J. Am. Ceram. Soc., 77, pp.2518-2522. https://doi.org/10.1111/j.1151-2916.1994.tb04637.x
  7. She, J. H. and Jiang, D. L., 1998: Development and application of silicon carbide cerandcs, Ceram. Eng., 227, pp3.
  8. Tokyo, S. K., Chiba, K. M., Tokorozawa, T. S., Ta. K. Tokyo, and H. K. Kashima, 1994: Process for preparing silicon carbide powder for use in semiconductor equipment, US 5,318,761.
  9. J. Li, J, Tian and L. Dong, J., 2000: Synthesis of SiC precursors by a two-step sol-gel process and their conversion to SiC powders, Eur. Ceram. Soc., 77, pp.1853- 1857.
  10. Liu, Z., Shen W., Bu W., Chen H., Hua Z., Zhang L., Li L., Shi J., and Tan S., 2005: Low temperature formation of nanocrystalline ${\beta}$-SiC with high surface and mesoporosity via reaction of mesoporous carbon and silicon powder, Micro. and Meso. Mater., 82, pp.137-145. https://doi.org/10.1016/j.micromeso.2005.02.022