• Title/Summary/Keyword: nano-pattern

Search Result 479, Processing Time 0.029 seconds

Effect of solvent and precursor on the CeO2 nanoparticles fabrication (CeO2 나노 분말 합성에 미치는 용매 및 전구체의 영향)

  • Ock, Ji-Young;Son, Jeong-Hun;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.118-122
    • /
    • 2018
  • Ceria ($CeO_2$) is a rare earth oxide, which has been widely investigated to improve the property. It is important to increase the surface area of $CeO_2$, because high surface area of $CeO_2$ can improve the catalytic ability. $CeO_2$ nanoparticles were synthesized by a solvothermal process. A discussion on the influence of solvent ratio and precursors on $CeO_2$ nanoparticles was performed. The size and degree of the agglomeration of the synthesized $CeO_2$ could be tuned by controlling those parameters. The average size and distribution of prepared $CeO_2$ powders was in the range of 3 to 13 nm and narrow, respectively. The XRD pattern showed that the synthesized $CeO_2$ powders were crystalline with cubic phase of $CeO_2$. The average particle size was calculated by Scherrer equation and FE-TEM images. The morphology of the synthesized $CeO_2$ particle was objected using FE-TEM and FE-SEM. Specific surface area of the synthesized $CeO_2$ was determined using BET (Brunauer-Emmett-Teller) equation.

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.

Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste (은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성)

  • Park, Seung Woo;Son, Jae Hong;Sim, Sang Bo;Choi, Yeon Bin;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Hussain, Sajjad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

Dry Etching of Flexible Polycarbonate and PMMA in O2/SF6/CH4 Discharges (O2/SF6/CH4 플라즈마를 이용한 플렉시블 Polycarbonate와 PMMA의 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • There has been a rapid progress for flexible polymer-based MEMS(Microelectromechanical Systems) technology. Polycarbonate (PC) and Poly Methyl Methacrylate (PMMA), so-called acrylic, have many advantages for optical, non-toxic and micro-device application. We studied dry etching of PC and PMMA as a function of % gas ratio in the $O_2/SF_6/CH_4$ temary plasma. A photoresist pattern was defined on the polymer samples with a mask using a conventional lithography. Plasma etching was done at 100 W RIE chuck power and 10 sccm total gas flow rate. The etch rates of PMMA were typically 2 times higher than those of PC in the whole experimental range. The result would be related to higher melting point of PC compared to that of PMMA. The highest etch rates of PMMA and PC were found in the $O_2/SF_6$ discharges among $O_2/SF_6$, $O_2/CH_4$ and $SF_6/CH_4$ and $O_2/SF_6/CH_4$ plasma composition (PC: ${\sim}350\;nm/min$ at 5 sccm $O_2/5$ sccm $SF_6$, PMMA: ${\sim}570\;nm/min$ at 2.5 sccm $O_2/7.5$ sccm $SF_6$). PC has smoother surface morphology than PMMA after etching in the $O_2/SF_6/CH_4$ discharges. The surface roughness of PC was in the range of 1.9$\sim$3.88 nm. However, that of PMMA was 17.3$\sim$26.1 nm.

The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent (나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과)

  • Lee, Dong-Il;kim, Ki-Don;Jeong, Jun-Ho;Lee, Eung-Sug;Choi, Dae-Geun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Nanoimprint lithography (NIL) is useful technique because of its low cost and high throughput capability for the fabrication of sub-micrometer patterns which has potential applications in micro-optics, magnetic memory devices, bio sensors, and photonic crystals. Usually, a chemical surface treatment of the stamp is needed to ensure a clean release after imprinting and to protect the expensive original master against contamination. Meanwhile, adhesion promoter between resin and substrate is also important in the nanoscale pattern. In this work, we have investigated the effect of surface treatment using silane coupling agent as release layer and adhesion promoter for UV-Nanoimprint lithography. Uniform SAM (self-assembled monolayer) could be fabricated by vapor deposition method. Vapor phase process eliminates the use of organic solvents and greatly simplifies the handling of the sample. It was also proven that 3-acryloxypropyl methyl dichlorosilane (APMDS) could strongly improve the adhesion force between resin and substrate compared with common planarization layer such as DUV-30J or oxygen plasma treatment.

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

Fabrication of Nanopatterned Oxide Layer on GaAs Substrate by using Block Copolymer and Reactive Ion Etching (블록 공중합체와 반응성 이온식각을 이용한 GaAs 기판상의 나노패터닝된 산화막 형성)

  • Kang, Gil-Bum;Kwon, Soon-Mook;Kim, Seoung-Il;Kim, Yong-Tae;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.29-32
    • /
    • 2009
  • Dense and periodic arrays of nano-sized holes were patterned in oxide thin film on GaAs substrate. To obtain the nano-size patterns, self-assembling diblock copolymer was used to produce thin film of uniformly distributed parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene (PS) matrix. The PMMA cylinders were removed with UV expose and acetic acid rinse to produce PS nanotemplate. By reactive ion etching, pattern of the PS template was transferred to under laid silicon oxide layer. Transferred patterns were reached to the GaAs substrate by controlling the dry etching time. We confirmed the achievement of etching through the removing oxide layer and observation of GaAs substrate surface. Optimized etching time was 90 to 100 sec. Pore sizes of the nanopattern in the silicon oxide layer were 20~22 nm.

  • PDF

Synthesis and Electrochemical Properties of LiFePO4 Cathode Material obtained by Electrospinning Method (전기방사법을 이용한 LiFePO4 양극 활물질의 합성 및 전기화학적 특성)

  • Lee, Seung-Byung;Cho, Seung-Hyun;Park, Sun-Il;Lee, Wan-Jin;Lee, Yun-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.268-272
    • /
    • 2008
  • $LiFePO_4$ material was synthesized by electrospinning method to obtain optimal particle size($50{\sim}100\;nm$) without carbon coating or ball milling. This material showed an orthorthombic structure with Pnma space group without any impurities, such as FeP or $Fe_2P$, in the XRD pattern. The particle morphology and particle shape were observed by SEM analysis. Li/$LiFePO_4$ cell showed a high initial discharge capacity of 135 mAh/g, at current density of $0.1\;mA/cm^2$ with a cut-off voltage of 2.8 to 4.0V. This cell exhibited a perfect cycle performance over 99.9% cycle retention rate up to 50 cycles.

Fracture resistance of endodontically treated maxillary premolars restored by silorane-based composite with or without fiber or nano-ionomer

  • Shafiei, Fereshteh;Tavangar, Maryam Sadat;Ghahramani, Yasamin;Fattah, Zahra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 2014
  • PURPOSE. This in vitro study investigated the fracture resistance of endodontically treated premolars restored using silorane-or methacrylate-based composite along with or without fiber or nano-ionomer base. MATERIALS AND METHODS. Ninety-six intact maxillary premolars were randomly divided into eight groups (n = 12). G1 (negative control) was the intact teeth. In Groups 2-8, root canal treatment with mesio-occlusodistal preparation was performed. G2 (positive control) was kept unrestored. The other groups were restored using composite resin as follows: G3, methacrylate-based composite (Z250); G4, methacrylate composite (Z250) with polyethylene fiber; G5 and G6, silorane-based composite (Filtek P90) without and with the fiber, respectively; G7 and G8, methacrylate-and silorane-based composite with nano-ionomer base, respectively. After aging period and thermocycling for 1000 cycles, fracture strength was tested and fracture patterns were inspected. The results were analyzed using ANOVA and Tukey HSD tests (${\alpha}$=0.05). RESULTS. Mean fracture resistance for the eight groups (in Newton) were G1: $1200{\pm}169^a$, G2: $360{\pm}93^b$, G3: $632{\pm}196^c$, G4: $692{\pm}195^c$, G5: $917{\pm}159^d$, G6: $1013{\pm}125^{ad}$, G7: $959{\pm}148^d$, G8: $947{\pm}105^d$ (different superscript letters revealed significant difference among groups). Most of the fractures in all the groups were restorable, except Group 3. CONCLUSION. Silorane-based composite revealed significantly higher strength of the restored premolars compared to that of methacrylate one. Fiber insertion demonstrated no additional effect on the strength of both composite restorations; however, it increased the prevalence of restorable fracture of methacrylate-based composite restored teeth. Using nano-ionomer base under methacrylate-based composite had a positive effect on fracture resistance and pattern. Only fiber-reinforced silorane composite restoration resulted in a strength similar to that of the intact teeth.