• Title/Summary/Keyword: nano-morphology

Search Result 674, Processing Time 0.029 seconds

The Effect of Nitriding/DLC Coating on the High Cycle Fatigue Properties of Fe-3.0Ni-0.7Cr-1.4Mn-X Steel (Fe-3.0Ni-0.7Cr-1.4Mn-X강의 고주기피로특성에 미치는 질화/DLC코팅의 영향)

  • Jang, Jae Cheol;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.587-594
    • /
    • 2016
  • Various surface treatments and thin film coating processes on the surface of injection die steel have been developed to extend the life. Most of previous studies were mainly focused on investigating the wear and static bonding behavior of thin films. In this study complex surface treatments of DLC coating combined with ion nitriding were applied to increase fatigue life and wear resistance. Ion nitriding, DLC coating, and DLC coating following nitriding on the surface of Fe-3.0Ni-0.7Cr-1.4Mn-X steel were investigated to uncover the beneficial effect which is applicable to injection die. The effect of various surface treatments and coating conditions on high cycle fatigue resistance was studied. Surface morphology change during fatigue tests were observed with AFM. Fatigue life of the die steel increased by 10 to 1,000 times at the various level of stress amplitudes in the condition of DLC coating following the ion nitriding for 3 hrs comparing with the only DLC coated condition.

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

Carbon nanotubes synthesis using diffusion and premixed flame methods: a review

  • Mittal, Garima;Dhand, Vivek;Rhee, Kyong Yop;Kim, Hyeon-Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.

Effect of Performance in Dye-sensitized Solar Cells by PEG Contents (PEG 함량변화가 염료감응형 태양전지의 효율에 미치는 영향)

  • Baek, Hyoung-Youl;Han, Zhen-Ji;Li, Hu;Gu, Hal-Bon;Park, Kyung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.178-181
    • /
    • 2008
  • A solar cell based on dye-sensitized photoelectric conversion was studied by investigating the effects of the amount of polyethylene glycol(PEG), added to the $TiO_2$ paste, on surface morphology of the $TiO_2$ films and on the solar cell performance. Energy conversion efficiency was found to increase with PEG addition up to 20 % by weight of $TiO_2$ and then decrease with further addition due to the aggregation of $TiO_2$ nano particles in the $TiO_2$ film. In this study, the best result of dye-sensitized solar cell was the short circuit current(Isc) of $22.6mAcm^{-2}$, the open circuit voltage (Voc) of 0.73 V, the fill factor (ff) of 0.55 and the overall energy conversion efficiency (${\eta}$) of 9.1 % under illumination with AM 1.5 simulated sunlight.

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

WSR Study of Particle Size, Concentration, and Chemistry near Soot Inception (WSR 초기수트 조건에서의 입자 크기, 농도 및 화학적 특성)

  • Lee, Eui-Ju;Mulholland, George. W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1298-1303
    • /
    • 2004
  • The characteristics of soot near the soot inception point for an ethene-air flame was carried out in a WSR (well-stirred reactor). The new sampling tool like the temperature controlled filter system was introduced to minimize the condensation during sampling. The new analysis tools applied include the real time size distribution analysis with the Nano-DMA, particle size by transmission electron microscopy, C/H analysis, g filter analysis, and thermogravimetric analysis using both non-oxidative and oxidative pyrolysis. The WSR can generate young soot particles that can be collected and examined to gain insight into inception. For the current conditions, soot does not form for ${\Phi}=1.9$, inception occurs at or before ${\Phi}=2.0$, and inception combined with soot surface growth and/or coagulation occurs for ${\Phi=2.1}$. The filter samples for ${\Phi}$=1.9 are composed of volatile compounds that evolve at relatively low temperatures when heated in the presence or absence of $O_2$. The samples collected from the WSR at ${\Phi}=2.0$ and ${\Phi}=2.1$ are precursor-like in morphology and size. They have higher C/H ratios and lower organic percentages than precursor particles, but they are clearly not fully carbonized soot. The WSR PAH distribution is similar to that in young soot from inverse flames.

  • PDF

Effect of Microwave Irradiation on Morphology and Size of Anatase Nano Powder: Efficient Photodegradation of 4-Nitrophenol by W-doped Titania

  • Shojaei, Abdollah Fallah;Loghmani, Mohammad Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3981-3986
    • /
    • 2012
  • Anatase nanocrystalline and its tungsten-doped (0.4, 2, and 4 mol %) powders have been synthesized by microwave irradiation through hydrolysis of titanium tetra-isopropoxide (TIP) in aqueous solution. The materials are characterized by XRD, Raman, SEM-EDX, TEM, FT-IR and UV-vis techniques. The nanocrystalline $TiO_2$ particles are 30 nm in nature and doping of tungsten ion decreases their size. As seen in TEM images, the crystallites of W (4 mol %) doped $TiO_2$ are small with a size of about 10 nm. The photocatalytic activity was tested on the degradation of 4-nitrophenol (4-NP). Catalytic activities of W-doped and pure $TiO_2$ were also compared. The results show that the photocatalytic activity of the W-doped $TiO_2$ photocatalyst is much higher than that of pure $TiO_2$. Degradation decreases from 96 to 50%, during 115 min, when the initial 4-NP concentration increases from 10 to 120 ppm. Maximum degradation was obtained at 35 mg of photocatalyst.

Detection of Avidin Based on Rugate-structured Porous Silicon Interferometer

  • Koh, Young-Dae;Kim, Sung-Jin;Park, Jae-Hyun;Park, Cheol-Young;Cho, Sung-Dong;Woo, Hee-Gweon;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2083-2088
    • /
    • 2007
  • Biosensor based on rugate PSi interferometer for the detection of avidin has been described. Rugate PSi fabricated by applying a computer-generated pseudo-sinusoidal current waveform has been prepared for the application as a label-free biosensor based on porous silicon interferometer. The fabrication, optical characterization, and surface derivatization of a rugate PSi has been described. The method to fabricate biotinderivatized rugate PSi has been investigated. The surface and cross sectional morphology of rugate PSi are obtained with SEM. FT-IR spectroscopy is used to characterize the oxidation and functionalization reaction of rugate PSi sample. Binding of the avidin into the biotin-derivatized rugate PSi induces a change in refractive index. A red-shift of reflectivity by 18 nm in the reflectivity spectrum is observed, when the biotin-modified rugate PSi was exposed to a flow of avidin.

Titanium Containing Solid Core Mesoporous Silica Shell: A Novel Efficient Catalyst for Ammoxidation Reactions

  • Venkatathri, N.;Nookaraju, M.;Rajini, A.;Reddy, I.A.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.143-148
    • /
    • 2013
  • Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by $^{29}SiMASNMR$ studies. The surface area of the material is found to be around $550\;m^2g^{-1}$ and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.

Assembly of chemically reduced graphene oxide with folic acid functionalized with pyrene moieties and electrochemical sensing of folate receptors

  • Kwon, Binhee;Park, Jongyeap;Jeong, Woojun;Jeong, Guembi;Ryu, Hyeong Seon;Paoprasert, Peerasak;Park, Sung Young;In, Insik
    • Carbon letters
    • /
    • v.27
    • /
    • pp.26-34
    • /
    • 2018
  • To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an ${\pi}-{\pi}$ interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.