• Title/Summary/Keyword: nano-morphology

Search Result 669, Processing Time 0.029 seconds

Structure Formation in Multilayered Films Prepared by the Layer-by-Layer Deposition using PAA and HM-PEO

  • Seo, Jin-Hwa;Lutkenhaus Jodie L..;Kim, Jun-Oh;Hammond Paula T.;Char Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.295-295
    • /
    • 2006
  • In present study, poly(acrylic acid) (PAA) and hydrophobically modified poly(ethylene oxide) (HM-PEO) multilayers based on the hydrogen bonding between the component polymer pair have been prepared by the LbL deposition method. Dip assembled HM-PEO/PAA multilayers yield unique film morphologies in comparison with PEO/PAA multilayers due to the micellar formation of HM-PEO owing to the hydrophobic attraction between alkyl chains end-capped with the PEO chains. Individual HM-PEO micelles were connected through the bridging PEO chains to form temporary networks on multilayer surface and induced peculiar surface morphology on HM-PEO/PAA multilayers above the critical number of bilayers.

  • PDF

Orientation of Poly(styrene-b-methylmethacrylate) thin films deposited on Self-Assembled Monolayers of phenylsilanes

  • Kim, Rae-Hyun;Bulliard, Xavier;Char, Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.311-311
    • /
    • 2006
  • The morphology of Poly(styrene-b-methylmethacrylate) (P(S-b-MMA)) block copolymer thin films deposited on silicon wafers was controlled by treating the substrates with Self-Assembled Monolayers (SAM) of phenylsilanes with different alkyl chain lengths. It was found that the treatment with SAM strongly modified the substrates properties, especillay the surface energy, as compared with bare silicon oxide. By futher adjusting the molecular weight of P(S-b-MMA), a variety of morphologies could be generated, including a perpendicular orientation of lamellea of PS and PMMA, which is required for industrial applications.

  • PDF

A Reliability Test for Pb-Free Plating Solution and its Deposit (Pb-Free 도금용액 및 피막의 신뢰성평가)

  • Hur, Jin-Young;Koo, Suck bone;Lee, Hong-Kee
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2005
  • This study found a reliable evaluation for four kinds of pb-Free plating solutions and it's layers, through pure Sn, SnAg, SnBi and SnCu. These four kind of solutions are widely used to pb-Free plating. Hull-cell, Harring-blum, coverage, throwing power, current efficiency, stability, life-time, composition, hardness, roughness, abrasion, scratch, solderability, corrosion, contact angle, morphology, SIR(Surface insulation resistance) and Whisker test were experimented. Also, Using ICP, XRF, FE-SEM, EDS, temperature/humidity chamber, solderability tester, hardness tester, roughness tester, abrasion tester, salt spray tester, contact angle tester, SIR tester, and microscope. In this paper could be shown the systematic and various analysis for reliability about four kinds of pb-Free plating solutions, processes and it's deposit surface.

  • PDF

Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation

  • Ghamari, Misagh;Ghasemifard, Mahdi
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • The dependence of the IR optical properties of PMMA/$Al_2O_3$ nanocomposite on the alumina content was investigated in the wavelength range of $3500-2800cm^{-1}$. The samples were prepared via emulsion polymerization technique using oleic acid as a coupling agent. Grafting density calculations were carried out by means of elemental analysis CHN to yield the best coupling agent content. FTIR analysis confirmed the existence of a chemical bond between aluminum oxide and oleic acid. The outcomes of XRD analyses showed the presence of cubic gamma aluminum oxide in the nanocomposite, in contrast to the amorphous nature of PMMA. TEM images showed the core-shell morphology of the particles other than pristine PMMA. Optical constants of the nanocomposite were calculated based on FTIR spectra and the Kramers-Kronig equations. The presence of nano alumina modified some of the optical indexes in IR region.

Microwave Absorption Study of Carbon Nano Materials Synthesized from Natural Oils

  • Kshirsagar, Dattatray E.;Puri, Vijaya;Sharon, Maheshwar;Sharon, Madhuri
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.245-248
    • /
    • 2006
  • Thin films of carbon-nano materials (CNMs) of different morphology have been successfully deposited on ceramic substrate by CVD at temperatures $800^{\circ}C$, $850^{\circ}C$ and $900^{\circ}C$ using plant based oils in the presence of transition metal catalysts (Ni, Co and Ni/Co alloys). Based on the return and insertion loss, microwave absorption properties of thin film of nanocarbon material are measured using passive micro-Strip line components. The result indicates that amongst CNMs synthesized from oil of natural precursors (mustered oil - Brassica napus, Karanja oil - Pongamia glabra, Cotton oil - Gossipium hirsuta and Neem oil - Azadirachta indica) carbon nano fibers obtained from neem's seed oil showed better microwave absorption (~20dB) in the range of 8.0 GHz to 17.90 GHz.

  • PDF

Synthesis and Properties of Multimetal Oxide Nanopowders via Nano-explosive Technique

  • Vasylkiv, Oleg;Sakka, Yoshio;Skorokhod, Valeriy
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.152-153
    • /
    • 2006
  • We demonstrate the methodology of engineering the multi-component ceramic nanopowder with precise morphology by nanoblast calcinations decomposition of preliminary engineered nanoreactors. Multiple explosions of just melted $C_3H_6N_6O_6$ embedded into preliminary engineered nanoreactors break apart the agglomerates due to the highly energetic impacts of the blast waves. Also, the solid-solubility of one component into the other is enhanced by the extremely high local temperature generated during each nano-explosion in surrounding area. This methodology was applied for production of agglomeratefree nano-aggregates of $Gd_{20}Ce_{80}O_{1.95}$ with an average size of 42 nm and $LaSrGaMgO_{3-x}$ nanopowder with an average aggregate size of 83 nm.

  • PDF

In-Situ TEM Observation on Phase Formation of $TiO_2$ Nanoparticle Synthesized by Flame Method

  • Jie, H.S.;Park, H.;Kim, K.H.;Ahn, J.P.;Park, J.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.469-470
    • /
    • 2006
  • [ $TiO_2$ ] nanoparticle was synthesized by the flame method, which was controlled by varying the ratio and flow rate of gas mixtures consisting of oxygen (oxidizer), methane (fuel) and nitrogen (carrier gas). The crystalline phases of $TiO_2$ nanoparticle depended strongly on the temperature distribution in the flame, whereas the morphology was not sensitive. We proved that the anatase phase formed without the phase transformation in the flame and the rutile phase generated through several phase transformations.

  • PDF

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Influence of Ultrasonic Treatment and Nano-Clay content on the Properties of Nano-Clay/Polyurethane Foam (초음파 처리와 나노클레이 농도가 나노클레이/폴리우레탄 폼의 물성에 미치는 영향)

  • Her, Kiyoung;Lim, Soonho;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.208-212
    • /
    • 2009
  • The nano-clay is widely used in polymer-nanocomposites due to the high aspect ratio, heat resistance and nano-scale dimension. In recent researches, the thermal and mechanical properties of polyurethane foam were improved with introducing the nano-clay. In this study, we describe the influence of ultrasonic treatment and content of nano-clay on properties of polyurethane foam. The nano-clay/polyurethane foam were characterized using their recovery time, compressive deflection, cell morphology and tensile test. The ultrasonic treatment was very effective for dispersion of nano-clay. Moreover, we found that introducing over 3 wt% of nano-clay bring the decrease of properties due to the poor dispersion. Expecially, ultrasonically treated 20A/polyurethane foam(1 wt%) showed greatly improved properties, such as homogeneous cell size and good dimension stability. We expect that our results could be applied to insulating materials for construction.

Effects of Growth Temperature and Time on Properties of ZnO Nanostructures Grown by Electrodeposition Method (Electrodeposition에 의해 성장온도와 시간을 달리하여 성장한 ZnO 나노구조의 특성)

  • Park, Youngbin;Nam, Giwoong;Park, Seonhee;Moon, Jiyun;Kim, Dongwan;Kang, Hae Ri;Kim, Haeun;Lee, Wookbin;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.204-209
    • /
    • 2014
  • The electrodeposition of ZnO nanorods was performed on ITO glass. The optimization of two process parameters (solution temperature and growth time) has been studied in order to control the orientation, morphology, density, and growth rate of ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results of the structural property show that hexagonal ZnO nanorods with wurtzite crystal structures have a c-axis orientation, and higher intensity for the ZnO (002) diffraction peaks. Furthermore, the nanorods length increased with increasing both the solution temperature and the growth time. The results of the optical property show a strong UV (3.28 eV) peaks and a weak visible (1.9~2.4 eV) bands, the intensity of UV peaks was increased with increasing both the solution temperature and the growth time. Especially, the UV peak for growth of nanorods at $75^{\circ}C$ blue-shift than different temperatures.