• Title/Summary/Keyword: nano-indentation test

Search Result 72, Processing Time 0.047 seconds

Elastic Properties Evaluation of Thin Films on Flexible Substrates with Consideration of Contact Morphology in Nanoindentation (나노압입시험에서의 접촉형상 보정을 통한 유연소자 박막의 탄성특성 평가)

  • Kim, Won Jun;Hwang, Gyeong-Seok;Kim, Ju-Young;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • The evolution of smartphones has led to numerous researches in the mechanical behavior of flexible devices. Due to the nano-size of the thin flexible film, nanoindentation is widely used to evaluate its mechanical behaviors, such as elastic modulus, and hardness. However, the commonly used Oliver-Pharr method is not suited for analyzing the indentation force-depth curves of hard films on soft substrates, as the effects of soft substrate is not considered theoretically. In this study, the elastic modulus of the thin film was evaluated with references to other reported models which include the substrate effect, and with calibration of the indentation depth for the pile-ups between the indenter and test surface. We fabricated test samples by deposition of amorphous metal film on polyimide and silicon wafers for verification of modified models.

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

A Study on Electrically Assisted Solid State Joining of Aluminum and Copper (알루미늄과 구리 간 통전고상접합 연구)

  • Park, J.W.;Choi, H.;Lee, S.;Jeong, H.J.;Hong, S.T.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The influence of electric current on the joining properties of aluminum and copper was investigated. Various pulsed electric current conditions were set to the joining specimens followed by pressure. The shear strength of the joint area between aluminum and copper was measured by the lab shear test. In addition, the microstructures of the joint area were observed through a field emission scanning electron microscope, energy dispersive X-ray, and electron backscatter diffraction. The mechanical properties of each phase in the joint region were measured by nano-indentation. As a result, it was confirmed that electrically assisted solid state joining of copper and aluminum could be applied in various industrial fields.

The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement (콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교)

  • 장상엽;김용철;조용범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF

Zr 기반 단일합금타겟으로 증착된 나노복합박막의 구조 및 기계적 특성

  • Yun, Hye-Won;Lee, Han-Chan;O, Se-Pil;Jeong, Hun;Gwon, Se-Hun;Mun, Gyeong-Il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.37.2-37.2
    • /
    • 2018
  • ZrN 코팅은 다른 하드 코팅과 비교해 우수한 기계적 특성 및 내식성으로 다양한 산업 분야에서 사용되고 있다. 특히 ZrN 기반의 코팅 중, ZrCuN 코팅은 50 GPa 이상의 매우 높은 경도를 나타내는 것으로 보고되고 있다. 본 연구에서는 Zr-Cu 기반 조성에 우수한 기계적 특성 향상을 위해 제 3의 원소를 첨가하여 단일합금 타겟을 제작하였다. 단일 합금 타겟은 플라즈마 아크멜팅법으로 제작되었으며, 제작된 단일합금 타겟을 이용하여 DC 마그네트론 스퍼터링 공정을 통해 Zr 기반의 나노복합박막을 증착하였다. Zr기반 나노복합 박막은 다양한 $Ar:N_2$ 분위기 하에서 증착하였으며, 가스비에 따른 코팅의 특성을 확인하기 위해 SEM/EDS, XRD, nano-indentation, friction test 분석을 진행하였다.

  • PDF

Improvement in Adhesion of the Indium Zinc Oxide (IZO) Thin Films on Organic Polymer Films

  • Lee, Yeong-Beom;Kim, Kyong-Sub;Ko, Min-Jae;Kim, Kyung-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.537-539
    • /
    • 2009
  • We report the improvement in adhesion of IZO thin films through oxygen ($O_2$) plasma treatment of organic polymer film. In conclusion, the $O_2$ plasma treatment of an organic polymer film was accomplished with improving ca. 1.8 times in adhesion than that of the only general etch treatment on the same organic polymer film.

  • PDF

Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate

  • Park, Min-Seok;Kim, Dae-Young;Shin, Chang-Seouk;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.307-314
    • /
    • 2021
  • Diamond-like carbon (DLC) is difficult to achieve sufficient adhesion because of weak bonding between DLC film and the substrate. The purpose of this study is to improve the adhesion between substrate and DLC film. DLC film was deposited on AISI H13 using linear ion source. To improve adhesion, the substrate was treated by dual post plasma nitriding. In order to define the mechanism of the improvement in adhesive strength, the gradient layer between substrate and DLC film was analyzed by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The microstructure of the DLC film was analyzed using a micro Raman spectrometer. Mechanical properties were measured by nano-indentation, micro vickers hardness tester and tribology tester. The characteristic of adhesion was observed by scratch test. The adhesion of the DLC film was enhanced by active screen plasma nitriding layer.

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF