• 제목/요약/키워드: nano zinc oxide

검색결과 151건 처리시간 0.023초

Photocurrent Characteristics of Zinc-Oxide Films Prepared by Using Sputtering and Spin-Coating Methods

  • Park, Sungho;Kim, Byung Jun;Kang, Seong Jun;Cho, Nam-Kwang
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1351-1355
    • /
    • 2018
  • The photocurrent characteristics of zinc-oxide (ZnO) thin-film transistors (TFTs) prepared using radio-frequency sputtering and spin-coating methods were investigated. Various characterization methods were used to compare the physical and the chemical properties of the sputtered and the spin-coated ZnO films. X-ray photoelectron spectroscopy was used to investigate the chemical composition and state of the ZnO films. The transmittance and the optical band gap were measured by using UV-vis spectrometry. The crystal structures of the prepared ZnO films were examined by using an X-ray diffractometer, and the surfaces of the films were investigated by using scanning electron microscopy. ZnO TFTs were prepared using both sputter and solution processes, both of which showed photocurrent characteristics when illuminated by light. The sputtered ZnO TFTs had a photoresponsivity of 3.08 mA/W under illumination with 405-nm light while the solution-processed ZnO TFTs had a photoresponsivity of 5.56 mA/W. This study provides useful information for the development of optoelectronics based on ZnO.

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

나노포장의 개발 및 나노물질 이행에 따른 안전관리 현황 (Status of nano-packaging and safety management of nanomaterials by migration)

  • 이재열;조유미;최재천;박세종;김준태
    • 식품과학과 산업
    • /
    • 제50권2호
    • /
    • pp.52-59
    • /
    • 2017
  • 나노포장은 나노물질 첨가에 따라 항균성, 가스 및 자외선 차단성과 같은 기능성이 향상된다는 장점이 부각되면서 오랫동안 개발되어 왔다. 하지만 최근들어 이러한 나노물질들이 식품과 직접적으로 접촉되면서 식품으로 이행되어 식품과 함께 섭취될 수 있기 때문에 안전하지 않을 수 있다는 논란이 있다. 독일, 스페인, 영국 등의 많은 유럽 국가들에서는 이러한 문제에 대한 빠른 대처를 위해 2000년대 중반부터 또한 우리나라에서는 2014년부터 나노물질 적용 포장재에서 나노물질의 이행에 대한 연구를 수행하고 있다. 나노물질별, 환경별(온도, 시간), 식품모사용매 또는 식품 유형별에 따른 나노물질의 이행에 대한 연구결과를 바탕으로 향후 안전관리를 위한 방안과 가이드라인 등이 마련되어야 한다.

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

X-ray/gamma radiation shielding properties of Aluminium-Bariume-Zinc Oxide nanoparticles synthesized via low temperature solution combustion method

  • K.V. Sathish;K.N. Sridhar;L. Seenappa;H.C. Manjunatha;Y.S. Vidya;B. Chinnappa Reddy;S. Manjunatha;A.N. Santhosh;R. Munirathnam;Alfred Cecil Raj;P.S. Damodara Gupta;B.M. Sankarshan
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1519-1526
    • /
    • 2023
  • For the first time Aluminium-BariumeZinc oxide nanocomposite (ZABONC) was synthesized by solution combustion method where calcination was carried out at low temperatures (600℃) to study the electromagnetic (EM) (X/γ) radiation shielding properties. Further for characterization purpose standard techniques like PXRD, SEM, UV-VISIBLE, FTIR were used to find phase purity, functional groups, surface morphology, and to do structural analysis and energy band gap determination. The PXRD pattern shows (hkl) planes corresponding to spinel cubic phase of ZnAl2O4, cubic Ba(NO3)2, α and γ phase of Al2O3 which clearly confirms the formation of complex nano composite. From SEM histogram mean size of nano particles was calculated and is in the order of 17 nm. Wood and Tauc's relation direct energy band gap calculation gives energy gap of 2.9 eV. In addition, EM (X/γ) shielding properties were measured and compared with the theoretical ones using standard procedures (NaI (Tl) detector and multi channel analyzer MCA). For energy above 356 keV the measured shielding parameters agree well with the theory, while below this value slight deviation is observed, due to the influence of atomic/crystallite size of the ZABONC. Hence synthesized ZABONC can be used as a shielding material in EM (X/γ) radiation shielding.

나노 산화아연을 사용한 수분산 폴리우레탄의 합성과 특성 (Synthesis and Characterization of Waterborne Polyurethane using Nano Zinc oxide)

  • 천정미;정부영;유종선;박덕제;천제환
    • 접착 및 계면
    • /
    • 제9권4호
    • /
    • pp.17-23
    • /
    • 2008
  • 본 연구에서는 polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylolpropionic acid (DMPA), ethylenediamine (EDA) 및 나노 ZnO (SUNZnO)를 사용하여 폴리우레탄/나노 ZnO를 합성하였다. 나노 ZnO를 고형분의 0~1.0 wt%로 프리폴리머 단계에서 첨가하고 또한, 이온성기를 함량별로 도입하여 폴리우레탄/나노 ZnO를 합성하여 열적 성질, 기계적 성질을 검토하였다. 나노 ZnO 함량별로 혼입하였을 때 유리전이온도는 뚜렷한 경향을 보이지 않고 이온성기 함량이 증가함에 따라 $T_g$는 다소 상승하는 결과를 보였으며, 나노 ZnO의 혼입량과 이온성기 함량이 증가함에 따라 인장강도와 100% 탄성률은 대체로 증가하고 파단신율은 감소하는 경향을 보였다.

  • PDF

DFT Study of CO2 Adsorption on the Zn12O12 Nano-cage

  • Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3722-3726
    • /
    • 2013
  • Covalent functionalization of a $Zn_{12}O_{12}$ nano-cage with $CO_2$ molecule in terms of energetic, geometry, and electronic properties was investigated by density functional theory method. For chemisorption configurations, the adsorption energy of $CO_2$ on the $Zn_{12}O_{12}$ nano-cage for the first $CO_2$ was calculated -1.25 eV with a charge transfer of 1.00|e| from the nano-cage to the $CO_2$ molecule. The results show that $CO_2$ molecule was significantly detected by pristine $Zn_{12}O_{12}$ nano-cage, therefore the nano-cage can be used as $CO_2$ storage. Also, more efficient binding could not be achieved by increasing the $CO_2$ concentration. For Physisorption configurations, HOMO-LUMO gap of the configurations has not changed, while slight changes have been observed in the chemisorption configurations.

Effects of post anneal for the INZO films prepared by ultrasonic spray pyrolysis

  • Lan, Wen-How;Li, Yue-Lin;Chung, Yu-Chieh;Yu, Cheng-Chang;Chou, Yi-Chun;Wu, Yi-Da;Huang, Kai-Feng;Chen, Lung-Chien
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.179-186
    • /
    • 2014
  • Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After film deposition, different anneal temperature treatment as 350, 450, $550^{\circ}C$ were applied. Electrical properties as concentration and mobility were characterized by Hall measurement. The surface morphology and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both films, the concentration variation of the films at different heat treatment temperature was realized. Donors correspond to zinc related states dominate the conduction mechanism for these INZO films after $550^{\circ}C$ high temperature heat treatment process.

The Influence of Silicon Doping on Electrical Characteristics of Solution Processed Silicon Zinc Tin Oxide Thin Film Transistor

  • Lee, Sang Yeol;Choi, Jun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.103-105
    • /
    • 2015
  • Effect of silicon doping into ZnSnO systems was investigated using solution process. Addition of silicon was used to suppress oxygen vacancy generation. The transfer characteristics of the device showed threshold voltage shift toward the positive direction with increasing Si content due to the high binding energy of silicon atoms with oxygen. As a result, the carrier concentration was decreased with increasing Si content.

Sports injury treatment and sports rehabilitation employing the Nanoparticles containing zinc oxide

  • Zhichao Ma;Jie Qi;Weiwei Xun;Yaonan Li
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.67-74
    • /
    • 2023
  • The combination of physical activities and individual skills in sports creates an entertaining and competitive environment governed by a set of rules. In today's world, sports attract significant attention and are approached differently by various groups. Inevitably, injuries occur in sports, significantly impacting an athlete's performance and ability to participate in exercises and competitions. Addressing this issue, one of the crucial measures involves restoring the athlete's ability to engage in sports and compete. Sports rehabilitation serves as a treatment to mitigate the effects of injuries, and when combined with surgery, it can expedite the recovery process. Therefore, the primary objective of this study is to utilize a biocompatible technology for synthesizing zinc oxide (ZnO) nanoparticles in sports rehabilitation, ensuring minimal harm to the environment.