DOI QR코드

DOI QR Code

Photocurrent Characteristics of Zinc-Oxide Films Prepared by Using Sputtering and Spin-Coating Methods

  • Park, Sungho (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Kim, Byung Jun (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Kang, Seong Jun (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Cho, Nam-Kwang (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
  • Received : 2018.05.17
  • Accepted : 2018.06.20
  • Published : 2018.11.15

Abstract

The photocurrent characteristics of zinc-oxide (ZnO) thin-film transistors (TFTs) prepared using radio-frequency sputtering and spin-coating methods were investigated. Various characterization methods were used to compare the physical and the chemical properties of the sputtered and the spin-coated ZnO films. X-ray photoelectron spectroscopy was used to investigate the chemical composition and state of the ZnO films. The transmittance and the optical band gap were measured by using UV-vis spectrometry. The crystal structures of the prepared ZnO films were examined by using an X-ray diffractometer, and the surfaces of the films were investigated by using scanning electron microscopy. ZnO TFTs were prepared using both sputter and solution processes, both of which showed photocurrent characteristics when illuminated by light. The sputtered ZnO TFTs had a photoresponsivity of 3.08 mA/W under illumination with 405-nm light while the solution-processed ZnO TFTs had a photoresponsivity of 5.56 mA/W. This study provides useful information for the development of optoelectronics based on ZnO.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. W. K. Lin, K. C. Liu, S. T. Chang and C. S. Li, Thin Solid Films 520, 3079 (2012). https://doi.org/10.1016/j.tsf.2011.11.039
  2. H. Yin, S. Kim, C. J. Kim, I. Song, J. Park, S. Kim and Y. Park, Appl. Phys. Lett. 93, 172109 (2008). https://doi.org/10.1063/1.3012386
  3. M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein and H. von Wenckstern, Phys. Status Solidi A 207, 1437 (2010). https://doi.org/10.1002/pssa.200983771
  4. Y. H. Lin, S. R. Thomas, H. Faber, R. Li, M. A. McLachlan, P. A. Patsalas and T. D. Anthopoulos, Adv. Electron. Mater. 2, 1600070 (2016). https://doi.org/10.1002/aelm.201600070
  5. C. W. Shih and A. Chin, Scientific Reports 7, 1147 (2017). https://doi.org/10.1038/s41598-017-01231-3
  6. B. S. Ong, C. Li, Y. Li, Y. Wu and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007). https://doi.org/10.1021/ja068876e
  7. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kanekol, Jpn. J. Appl. Phys. 48, 011301 (2009). https://doi.org/10.1143/JJAP.48.011301
  8. S-I. Kim, S. W. Kim, C. J. Kim and J-S. Park, J. Electrochem. Soc. 158, H115 (2011). https://doi.org/10.1149/1.3519987
  9. C-Y. Tsay, C-W. Wu, C-M. Lei, F-S. Chen and C-K. Lin, Thin Solid Films 519, 1516 (2010). https://doi.org/10.1016/j.tsf.2010.08.170
  10. S. Hu, H. Ning, K. Lu, Z. Fang, Y. Li, R. Yao, M. Xu, L. Wang, J. Peng and X. Lu, Nanomaterials 8, 197 (2018). https://doi.org/10.3390/nano8040197
  11. H. Ji, Y. Wei, X. Zhang and R. Jiang. Appl. Phys. Lett. 111, 202102 (2017). https://doi.org/10.1063/1.4998207
  12. H-W. Zan, W-T. Chen, H-W. Hsueh, S-C. Kao, M-C. Ku, C-C. Tsai and H-F. Meng, Appl. Phys. Lett. 97, 203506 (2010). https://doi.org/10.1063/1.3517506
  13. A. Nathan, S. Lee, S. Jeon and J. Robertson, J. Disp. Technol. 10, 917 (2014). https://doi.org/10.1109/JDT.2013.2292580
  14. T. Minami, Semicond. Sci. Technol. 20, S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  15. S. J. Lee et al., ACS Appl. Mater. Interfaces 10, 3810 (2018). https://doi.org/10.1021/acsami.7b17906
  16. Y. Jeong, C. Pearson, H-G. Kim, M-Y. Park, H. Kim, L-M. Do and M. C. Petty, RSC Adv. 5, 36083 (2015). https://doi.org/10.1039/C5RA02989A
  17. S. Y. Park, S. Kim, J. Yoo, K-H. Lim, E. Lee, K. Kim, J. Kim and Y. S. Kim, RSC Adv. 4, 11295 (2014). https://doi.org/10.1039/c3ra47437b
  18. J. H. Jun, B. Park, K. Cho and S. Kim, Nanotechnology 20, 505201 (2009). https://doi.org/10.1088/0957-4484/20/50/505201
  19. X. H. Ki, A. P. Huang, M. K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang and H. Yan, Mater. Lett. 57, 4655 (2003). https://doi.org/10.1016/S0167-577X(03)00379-3
  20. M-C. Chu, J. S. Meena, P-T. Liu, H-P. D. Shieh, H-C. You, Y-W. Tu, F-C. Chang and F-H. Ko, App. Phys. Express 6, 076501 (2013). https://doi.org/10.7567/APEX.6.076501
  21. J. B. Coulter and D. P. Birnie, Phys. Status Solidi B 255, 1700393 (2017).
  22. M. Ohyama, H. Kozuka and T. Yoko, J. Am. Ceram. Soc. 81, 1622 (1998).
  23. D. K. Hwang et al., NPG Asia Mater. 8, e233 (2016). https://doi.org/10.1038/am.2015.137
  24. T. Jun, K. Song, Y. Jung, S. Jeong and J. Moon, J. Mater. Chem. 21, 13524 (2011). https://doi.org/10.1039/c1jm11586c
  25. H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004). https://doi.org/10.1063/1.1633343
  26. S. W. Shin, K-H. Lee, J-S. Park and S. J. Kang, ACS Appl. Mater. Interfaces 7, 19666 (2015). https://doi.org/10.1021/acsami.5b04683

Cited by

  1. Multi-photoactive quantum-dot channels for zinc oxide phototransistors by a surface-engineering patterning process vol.19, pp.9, 2019, https://doi.org/10.1016/j.cap.2019.05.018
  2. Reducing the Persistent Photoconductivity Effect in Zinc Oxide by Sequential Surface Ultraviolet Ozone and Annealing Treatments vol.1, pp.12, 2018, https://doi.org/10.1021/acsaelm.9b00623
  3. Improving the visible-light photoresponse characteristics of a ZnO phototransistor via solution processable Li dopants vol.9, pp.30, 2018, https://doi.org/10.1039/d1tc02088a