• Title/Summary/Keyword: nano technology

Search Result 4,949, Processing Time 0.035 seconds

Emotion-on-a-chip(EOC) : Evolution of biochip technology to measure human emotion (감성 진단칩(Emotion-on-a-chip, EOC) : 인간 감성측정을 위한 바이오칩기술의 진화)

  • Jung, Hyo-Il;Kihl, Tae-Suk;Hwang, Yoo-Sun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.157-164
    • /
    • 2011
  • Emotion science is one of the rapidly expanding engineering/scientific disciplines which has a major impact on human society. Such growing interests in emotion science and engineering owe the recent trend that various academic fields are being merged. In this paper we propose the potential importance of the biochip technology in which the human emotion can be precisely measured in real time using body fluids such as blood, saliva and sweat. We firstly and newly name such a biochip an Emotion-On-a-Chip (EOC). EOC consists of biological markers to measure the emotion, electrode to acquire the signal, transducer to transfer the signal and display to show the result. In particular, microfabrication techniques made it possible to construct nano/micron scale sensing parts/chips to accommodate the biological molecules to capture the emotional bio-markers and gave us a new opportunities to investigate the emotion precisely. Future developments in the EOC techniques will be able to help combine the social sciences and natural sciences, and consequently expand the scope of studies.

  • PDF

Ultrasmall Polyethyleneimine-Gold Nanoparticles with High Stability (높은 안정성을 갖는 초미립 폴리에틸렌이민-금 나노입자)

  • Kim, Eun-Jung;Yeum, Jeong-Hyun;Ghim, Han-Do;Lee, Se-Guen;Lee, Ga-Hyun;Lee, Hyun-Ju;Han, Sang-Ik;Choi, Jin-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.161-165
    • /
    • 2011
  • This study is related to the preparation of biocompatible gold nanoparticles (AuNPs) which are stable in aqueous solutions for a long time. Ultrasmall polyethyleneimine (PEI)-capped AuNPs (PEI-AuNPs) with limited agglomeration were prepared in aqueous solutions at room temperature, which were based on the roles of PEI as a reductant and a stabilizer. PEI-AuNPs with an average size of 8~12 nm formed highly stable nanocolloids with an average hydrodynamic cluster size of around 50 nm in aqueous media. At a low concentration of metal precursor hydrogen tetrachloroaurate (III), the particle size was reduced noticeably. The typical peaks of gold were observed in the X-ray diffraction pattern of AuNPs. The cell viability of 98% was obtained in the case of PEI-AuNPs, while PEI was cytotoxic. The PEI-AuNP is considered to be a potential candidate as a contrast agent for computed tomography.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Grinding Kinetics of Calcite, Pyrophyllite and Talc During Stirred Ball Milling - Consideration of Selection Function (교반 볼밀에 의한 방해석, 납석, 활석의 분쇄 시 분쇄속도론에 관한 연구 - 선택함수의 고찰)

  • Choi, Hee-Kyu;Kim, Seong-Soo;Hwang, Jin-Yeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.135-145
    • /
    • 2007
  • The needs for the ultra fine particles have been increased in preparation field of raw powders such as fine ceramics and high functional products. In this study, a series of wet grinding experiments were carried out on inorganic powders such as calcite, pyrophyllite and talc by a stirred ball mill. The particle size distribution of ground products of each test material fur a given grinding time was found to be expressed by the grinding rate (selection function) which was obtained from the grinding kinetics analysis. The median diameter decreased from 6.49 to $0.47{\mu}m$ in calcite, and decreased from 3.91 to $1.14{\mu}m$ in pyrophyllite. However, in talc, median diameter was decreased a little bit from 10.30 to $6.67{\mu}m$. The grinding rate changing on calcite and pyriphyllite were similar at the same conditions. However, in the case of talc, it was observed that the grinding rate was not increased compared to other samples.

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube (초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석)

  • Lee, Dae-Won;Nguyen, Hoang Hai;So, Myeong-Ki;Nah, In-Wook;Park, Dong-Wha;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

Development of simulation method for heating line optimization of E-Mold by using commercial CAE softwares (전산모사 프로그램을 이용한 E-MOLD의 Heating Line 배치의 최적화 설계에 관한 연구)

  • Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1754-1759
    • /
    • 2008
  • To produce plastic parts that have fine pattern through conventional injection molding, a lot of difficulties follow. Therefore, rapid heating and cooling methods are good candidates for manufacturing injection-molded parts with micro/nano patterns. In this study, we adopted the E-Mold patent technology. The mold for E-Mold technology has a separate heated core with micro heaters. It is very important to optimize the lay-out of the heaters in heated core because it influences both control and distribution of mold temperature. We developed a optimization method of heating line lay-out by using commercial softwares and compared the output with the experimental results. We used Pro-Engineer Wildfire 2.0 for the mold design, ICEMCFD for mesh generation, and FLUENT for heat transfer simulation. The simulation results showed the temperature profile from $60^{\circ}C$ to $120^{\circ}C$ or $180^{\circ}C$ during heating and cooling process which were compared with the injection molding experiments. We concluded that the simulation could well explain the experimental results. It was shown that the E-Mold optimization design for heater lay-out could be available through the simulation.

Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin (에폭시 수지를 이용한 인계 난연제의 마이크로캡슐화 및 열적 특성 연구)

  • Baek Kyung-Hyun;Lee Jun-Young;Hong Sang-Hyun;Kim Jung-Hyun
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.404-411
    • /
    • 2004
  • The microcapsules containing triphenyl phosphate (TPP), a flame retardant, were prepared by phase-inversion emulsification technique using the epoxy resin (Novolac type) with excellent physical properties and network structure. This microencapsulation process was adopted for the protection of TPP evaporation and wetting of polymer composite during the polymer blend processing. The TPP, epoxy resin and mixed surfactants were emulsified to oil in water (O/W) by the phase inversion technology and then conducted on the crosslinking of epoxy resin by in-situ polymerization. The capsule size and size distribution of TPP capsules was controlled by mixed surfactant ratio, concentration and TPP contents, The formation and thermal property of TPP capsules were measured by differential scanning calorimetry and thermogravimetric analysis. The morphology and size of TPP capsules were also investigated by scanning and transmission electron microscopies. As the surfactant concentration increased, the TPP capsules were more spherical and mono-dispersed at the same weight ratio of mixed surfactants (F127: SDBS).

An Experience of Korean Consumer's Monitoring on Nanoproducts (국내 나노제품에 대한 시민 모니터링 결과 고찰)

  • Kim, Hoon-Gi
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.442-452
    • /
    • 2010
  • Our team carried out a new program for public engagement on nanotechnology in Korea. We chose 22 monitors, who majored in science or technology and graduated from universities long time ago. Most of them were married and housewives. This 'focus group' had not only general knowledge about science or technology but also much interest in social activities. The 167 nanoproducts to be monitored were for daily life, e.g. home appliances (washing machine, refrigerator, water purifier, etc), clothing, cosmetics, food, toy, and others. And the period of it was one month. The monitors had a sheet with 10 questions, and filled them out in essay form. All of them submitted 2~3 sheets every weekend to our team. Before monitoring, our team had a meeting for introduction and explanation about the potential risk of nanotechnology as well as benefits from it. Another meeting was held after finishing monitoring to share their experience one another. The main results of the monitoring were as follows: the number of nanoproducts describing both the definition of 'nano' and the size of nanomaterials was just 2 (1.2%) the number of them explaining the technical methods enough was 15 (9/0%) the number of them accounting for the reason of functional improvement enough was 14(8.4%); the number of them doubtful as if there would be exaggeration or false knowledge was 27 (16.2%); the number of them commenting potential hazards to human health or environment was almost zero; the number of them describing about safety certification acceptable was 9 (5.4%). The monitors made a proposal containing recommendation to Government and industry. The contents were as follows: industry should make the manual in detail and correctly, Describe Certificate detailed and correctly, Do research on risk and toxicity continually, Educate employee about nanoproducts at consumer's center; Government should make indication of nanoproducts compulsory, Appoint Certificate Authority and make Certificate Mark guaranteeing the safety on nanoproducts, Make detailed explanation about nanoproducts compulsory.

The Low and Static Magnetic Field Effects on the Motion of Biomolecule Sanals Inside the Primo Vascular System (낮은 정자기장 하에서 프리모 시스템 산알의 운동특성 연구)

  • Lee, Sang-Suk;Soh, Kwang-Sup
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.219-224
    • /
    • 2011
  • The motion features of sanals inside of the primo vascular system (PVS), that is so-called the Kyungrak system, are investigated under a low static magnetic field by using the anatomy technology and optical microscope. The sanals with a size of about 1 selected and separated from the primo vessel and node of the real PVS inside of the surface of the internal organs are observed from rabbits' abdominal wall and dipped with PBS liquid inside of petri dish. The sanal's moving velocity along the direction of magnetic field (xdirection) and perpendicular to the direction of magnetic field (y-direction) under the low magnetic field of 0 Oe, 20 Oe, 40 Oe, 60 Oe, and 80 Oe, respectively, is observed below a internal temperature of $38^{\circ}C$. Ten sanals' moving velocities versus magnetic field are shown two differently dominant tendencies with an average velocity of 0.9 pixel/s and a random velocity according to the x-direction and y-direction, respectively. This experimental results imply that the rotating motion of sanal with nuclei DNA composed of many inorganic magnetic materials of Mn and Co is monotonically weakened by the increase of applied magnetic field.