• Title/Summary/Keyword: nano technology

Search Result 4,949, Processing Time 0.036 seconds

A Study of Dynamic Properties of Graphene-Nanoribbon Memory (그래핀 나노리본 메모리의 동적 특성에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2014
  • In this work, we investigate the operational properties of this proposed device in detail via classical MD simulations. The bi-stability of the GNF(Graphene Nano-flake) shuttle encapsulated in bi-layer GNR could be achieved from the increase of the attractive energy between the GNRs when the GNF approached the edges of the GNRs. This result showed the potential application of the nano-electromechanical GNR memory as a NVRAM.

Performance of Thin Film Transistors Having an As-Deposited Polycrystalline Silicon Channel Layer

  • Hong, Wan-Shick;Cho, Hyun-Joon;Kim, Tae-Hwan;Lee, Kyung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1266-1269
    • /
    • 2007
  • Polycrystalline silicon (poly-Si) films were prepared directly on plastic substrates at a low (< $200^{\circ}C$) by using Catalytic Chemical Vapor Deposition (Cat-CVD) technique without subsequent annealing steps. Surface roughness of the poly-Si layer and the density of the gate dielectric layer were found to be influential to the TFT performance.

  • PDF

Inorganic and Organic Nano Materials and Devices

  • Li, G.P.;Bachman, Mark
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.4.1-4.1
    • /
    • 2009
  • The dream of futurists andtechnologists is to build complex, multifunctional machines so small that theycan only be seen with the aid of a microscope. The unprecedented technologyadvancements in miniaturizing integrated circuits on semiconductors, and theresulting plethora of sophisticated, low cost electronic devices demonstratethe impact that micro/nano scale engineering can have when applied only to thearea of electrical and computer engineering. Emerging research efforts indeveloping organic and inorganic nano materials together with using micro/nanofabrication techniques for implementing integrated multifunctional devices hopeto yield similar revolutions in other engineering fields. By cross linking theindividual engineering fields through micro/nano technology, various organicand inorganic materials and miniaturized system devices can be developed thatwill have future impacts in the IT and life science applications. Yet to buildthe complex micromachines and nanomachine of the future, engineering will needto develop the technology capable of seamlessly integrating these materials andsubsystems together at the micro and nano scales. The micromachines of thefuture will be “integrated nanosystems,” complex devices requiring the integration of multiple materials,phenomena, technologies, and functions at the same platform. To develop thistechnology will require great efforts in materials science and engineering, infundamental and applied sciences. In this talk, we will first discuss thenature of micro and nanotechnology research for IT and life sciences, and thenintroduce selected current activities in micro and nanotechnology research fororganic and inorganic materials and devices. The newly developed micro/nanofabrication processes and devices, combined with in-depth scientificunderstandings of materials, can lead to rapid development of next generationsystems for applications in IT and life sciences.

  • PDF

Pitch Measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic Force Microscope

  • Jonghan Jin;Ichiko Misumi;Satoshi Gonda;Tomizo Kurosawa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.19-25
    • /
    • 2004
  • Pitch measurements of 150 nm one-dimensional grating standards were carried out using a contact mode atomic force microscopy with a high resolution three-axis laser interferometer. This measurement technique was named as the 'nano-metrological AFM'. In the nano-metrological AFM, three laser interferometers were aligned precisely to the end of an AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$ stabilized He-Ne laser at a wavelength of 633 nm. Therefore, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM could be used to directly measure the length standard. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). The primary source of uncertainty in the pitch-measurements was derived from the repeatability of the pitch-measurements, and its value was about 0.186 nm. The average pitch value was 146.65 nm and the combined standard uncertainty was less than 0.262 nm. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

Electrical properties of the Porous polycrystalline silicon Nano-Structure as a cold cathode field emitter

  • Lee, Joo-Won;Kim, Hoon;Lee, Yun-Hi;Jang, Jin;Oh, Myung-Hwan;Ju, Byung-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1035-1038
    • /
    • 2002
  • The electrical properties of Porous polycrystalline silicon Nano-Structure (PNS) as a cold cathode were investigated as a function of anodizing condition, the thickness of Au film as a top electrode and the substrate temperature. Non-doped 2${\mu}m$-polycrystalline silicon was electrochemically anodized in HF: ethanol (=1:1) mixture as a function of the anodizing condition including a current density and anodizing time. After anodizing, the PNS was thermally oxidized for 1 hr at 900 $^{\circ}C$. Then, 20nm, 30nm, 45nm thickness of Au films as a top electrode were deposited by E-beam evaporator. Among the PNSs fabricated under the various kinds of anodizing conditions, the PNS anodized at a current density of 10mA/$cm^2$ for 20 sec has the lowest turn-on voltage and the highest emission current than those of others. Also, the electron emission properties were investigated as functions of measuring temperature and the different thickness of Au film as a top-electrode.

  • PDF

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.